Conditional Probability
A, B, assume $P(A)>0$
Define $P(B \mid A)= \begin{cases}\frac{P(A \cap B)}{P(A)} & \text { if } P(A)>0 \\ \text { not relevant } & \text { i } P(A)=0\end{cases}$
$P(0 \mid A)$ where = any event so new probality on S

Example: Puzzle of Torso Aces
4 planing cards A $A, A C, 217,2 \Delta$ Shuffle \& select two at random $B=\{$ Goth Aces selected $\} \quad P(B)=\frac{1}{6}$
$A_{1}=\{$ Ace of Spade selected\}
$A_{2}=\{$ at le as one Ace selected\} ~

$$
\begin{aligned}
& P\left(B \mid A_{1}\right)=\frac{P\left(A_{1} \cap B\right)}{P\left(A_{1}\right)}=\frac{P(B)}{P\left(A_{1}\right)}=\frac{1 / 6}{1 / 2}=\frac{1}{3} \\
& P\left(B \mid A_{2}\right)=\frac{P\left(A_{2} \cap B\right)}{P\left(A_{2}\right)}=\frac{P(B)}{P\left(A_{2}\right)}=\frac{1 / 6}{5 / 6}=1 / \frac{1}{5}
\end{aligned}
$$

Puzzle because why showed name of suit affect conditional probablely
Resolution: Conditim instead $A=\{$ I tell you I hare AA\}

Rewrite definer as

$$
P(A \cap B)=P(B \mid A) P(A)
$$

Generalized

$$
\begin{aligned}
P(A \cap B \cap C) & =P(B \cap C) P(A \mid B \cap C) \\
& =P(C) P(B \mid C) P(A \mid B \cap C)
\end{aligned}
$$

multiplication rule for probabraties

Independence A, B indeperdentil

$$
\begin{align*}
P(B \mid A) & =P(B) \\
\text { Since } P(B \mid A) & =\frac{P(A \cap B)}{P(A)} \\
\Longrightarrow P(A \cap B) & =P(A) \cdot P(B)
\end{align*}
$$

Equivalent to definition of conditional probability but more useful in practice

Independent family $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ if

$$
P\left(\bigcap_{j=1}^{k} B_{i j}\right)=\prod_{j=1}^{k} P\left(B_{i j}\right)
$$

Sn any subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, k \geqslant 2$

$$
\text { of }\{1,2, \ldots, n\}
$$

Reliability of a deuce or system is the provability that devicersypten will operate for specified duration-
parallel curcuit

- anume each device operate.
 independently
$A_{1}=$ \{upper curcent wortos\}
$A_{2}=\{$ lower cincent woiks $\}$

$$
\begin{aligned}
\text { reliability } & =P\left[A_{1} \cup A_{2}\right] \\
& =P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right) \\
& =P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1}\right) \cdot P\left(A_{2}\right) \\
& =.95+.95-(.95)^{2} \\
& =0.9975
\end{aligned}
$$

used for reduindancy
Series Crreut

$$
\begin{aligned}
\text { reluablety } & =P[\text { Gith devce crobk }] \\
& =P\left(A_{1} \cap A_{2}\right) \\
& =P\left(A_{1}\right) P\left(A_{2}\right) \\
& =.8(.9)=.72
\end{aligned}
$$

Equiveslent cercus for reliablety question

series $\quad .9850(.9850)(.9800)=0.9702$
Example

$$
\begin{aligned}
\text { "Recall" } & P(A \cup B \cup C) \\
= & P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C) \\
& -P(B \cap C)+P(A \cap B \cap C)
\end{aligned}
$$

releablity of extreme left corcut is

$$
=3(.9)-3(.9)^{2}+(.9)^{3}=0.9990
$$

equivalent crocuit

neliablety of middbe circuit

$$
.95+.95-(.95)^{2}=0.9975
$$

Reluabluty of entrie curcuit

$$
\begin{aligned}
& =.9990(.9975)(.99) \\
& =0.9865
\end{aligned}
$$

