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Abstract

We consider elliptic equations on RV*! of the form
Ay +g(z,u) =0, (r,y) € RY xR, (1)

where g(z,u) is a sufficiently regular function with g(-,0) = 0. We give sufficient
conditions for the existence of solutions of (1) which are quasiperiodic in y and
decaying as || — oo uniformly in y. Such solutions are found using a center
manifold reduction and results from the KAM theory. We discuss several classes

of nonlinearities g to which our results apply.
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Chapter 1
Introduction

In this dissertation, we consider elliptic equations of the form
Au+ gy + g(z,u) =0, (7,y) € RY xR, (1.1)

where (z,y) € RY x R, A is the Laplacian in z, and g : RY xR — R is a
sufficiently smooth function satisfying g(-,0) = 0. We investigate solutions of
(1.1) which decay to 0 as |z| — oo, uniformly in y. Our concern is the behavior
of such solutions in the remaining variable y; specifically, we are interested in the
existence of solutions which are quasiperiodic in . The purpose of this dissertation
is twofold. First, we build a general framework for studying solutions of (1.1)
using tools from dynamical systems, such as the center manifold theorem and the
Kolmogorov-Arnold-Moser (KAM) theory. Then we show how these techniques
yield quasiperiodic solutions in some specific classes of equations.

Geometric properties of solutions of (1.1) have been extensively studied by
many authors. Best understood are positive solutions which decay to 0 in all
variables. If g satisfies suitable assumptions, involving in particular symmetry and
monotonicity conditions with respect to x, then a classical result of [31] establishes
reflectional symmetry of such solutions, or even the radial symmetry about some
origin in RN¥*! if g is independent of x (see also [11, 12, 13, 26, 44, 45] or the

surveys [10, 52, 56] for related symmetry results and additional references). It is
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very likely, and has already been proved in some situations, that, under similar
hypotheses on g, bounded positive solutions which decay as || — oo uniformly in
y, but do not necessarily decay in y, enjoy the symmetry in x (see [34] for results
of this form). Several authors have also exposed complexities of various solutions
which do not decay at infinity. Examples, with ¢ = g(u), include multi-bump
solutions decaying along all but finitely many rays [46], saddle shaped solutions
and general multiple-end solutions [23, 24, 41], as well as solutions having both
fronts (transitions) and bumps [63].

Solutions of the form considered in the present dissertation (that is, solutions
decaying in x uniformly in y) were examined by Dancer in [19]. Considering
homogeneous nonlinearities g = g(u) of a certain type, with special focus on
the nonlinearities g(u) = u? — u with a subcritical p, he proved the existence of
solutions periodic (and nonconstant) in y. With the existence of periodic solutions
established, one wonders if solutions with more complicated behavior in y may
occur. The existence of quasiperiodic solutions then becomes one of the most
immediate compelling problems. Looking for tools to address this problem, one
thinks of the KAM theory quite naturally.

Since its inception [6, 40, 50], the KAM theory has been employed by many
authors in proving the existence of invariant tori filled with quasiperiodic solu-
tions for finite dimensional Hamiltonian systems (see, for example, [16, 20] for an
overview of results and techniques, or [25] for a more detailed historical account
and references). Extensions of the classical KAM results to infinite dimensional
Hamiltonian systems generated by partial differential equations (PDEs) have been
made by several authors (see, for example, [8, 15, 18, 30, 42, 43, 71] and references
therein). In a recent paper [22], de la Llave and Sire took an a posteriori (cp. [29])
approach to applying KAM techniques in PDEs. This approach consists in find-
ing approximate quasiperiodic solutions, and then proving the existence of true
quasiperiodic solutions nearby. The procedure does not rely on the well-posedness
of the initial value problem for the equation in question and is therefore applicable

to some ill-posed equations (this is illustrated by the Boussinesq equation in [22]).
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Potentially, their approach could give a way to deal with problems similar to ours
if the nonlinearity is analytic. We take a different route, however. We examine
(1.1) by its “spatial dynamics,” formally viewing it as an evolution equation with
the variable “y” taking the role of time. Invoking a center manifold theorem, we
find a finite-dimensional Hamiltonian system to which classical KAM results can
be applied.

Spatial dynamics, as a technique to study elliptic equations with an unbounded
variable, was first used by Kirchgéssner [39] and developed by Mielke [47, 48, 49]
and others (see, for example, [17, 28, 33, 35, 53, 54, 70]). The main idea underlying
this technique is that although the equation has an ill-posed initial value problem,
a large class of its solutions is often described by a finite dimensional reduction
— an ordinary differential equation with a well defined flow, which can be studied
using tools from dynamical systems.

An application of KAM theorems via spatial dynamics has also appeared in
the literature: in [69], Valls proves the existence of quasiperiodic solutions of
semilinear elliptic equations on a strip. Applying a center manifold reduction and
taking the Birkhoff normal form of the Hamiltonian of the reduced equation to
a sufficiently large order, she writes the reduced equation as the sum of an inte-
grable system and a (locally) small perturbation. This puts the problem in the
form suitable for the KAM theory, although, because of the lack of analyticity
of the center manifold reduction, KAM results for systems with finite degree of
smoothness have to be used. Semilinear elliptic equations on a strip were also
considered in an earlier work of Scheurle [65]. Similarly as in his paper [64] on
analytic reversible ODEs, he designs a Newton iteration scheme to find families
of quasiperiodic solutions bifurcating from an equilibrium. It is noteworthy that
resolvent estimates typically used in the center manifold reduction are involved in
[65], although the center manifold theorem is not invoked there. Working in the
analytic setting (and not losing it in a center manifold reduction), while restric-
tive, has the advantage of leading to a finer description of the solutions, such as

the analyticity of the solution branches. We also mention related results based on
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a variational approach to elliptic equations. In an extension of the Aubry-Mather
theory to PDEs, as developed by Moser [51] and Bangert [9] (see also [27, 59, 67]
and references therein), one considers integer-periodic elliptic equations (such as
equation (1.1), where g is 1-periodic in the variables x4, ..., xy, and u) as Euler-
Lagrange equations of an associated functional and shows the existence of local
minimizers whose graphs are within a bounded distance from a given hyperplane
and obey a certain “no self-intersection” property. The behavior of such solutions
depends on the orthogonal vector to the hyperplane, or the “rotation vector.” For
rationally independent rotation vectors one obtains solutions with a quasiperiod-
icity property relative to the integer translation. Note, however, that this class of
solutions is quite different from those studied in [65, 69] or in this dissertation; in
particular, they are all unbounded.

On a general level, our approach to constructing quasiperiodic solutions is sim-
ilar to that of [69]. However, applying these techniques to (1.1) poses significant
difficulties. The first one is that in our case the “cross-section” of the domain
RY x R is RY. Thus, the Schrodinger operator appearing in the evolution for-
mulation of (1.1), namely, the operator —A — ay(x) with a1(x) = ¢,(z,0), has
a nonempty essential spectrum. For the center manifold reduction to apply, we
need the essential spectrum to be away from and to the right of the origin on the
real axis. On the other hand, the KAM theory calls for some eigenvalues of an
underlying matrix operator to lie on the imaginary axis, and this in turn requires
the Schrodinger operator to have a number of negative eigenvalues. Whether such
eigenvalues exist, simultaneously with the essential spectrum contained in the pos-
itive half-line, depends on the specific problem and it takes some work to verify
that they do for some equations of a given structure. The unboundedness of the
cross-section complicates matters in other ways as well. One is the lack of the
Fourier eigenfunction expansion, which is often useful for explicit computations
when the cross-section is an interval or a rectangle (cp. [29, 69, 71]).

There is also a difficulty coming from the nonlinearity itself, since we allow the

expansion of the function g at © = 0 to involve a nontrivial quadratic term. If the
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quadratic nonlinear term is absent, the analysis becomes simpler when it comes
to the verification of certain nondegeneracy conditions needed in the KAM-type
results [69, 71]. For example, in the approach of [69], when the nonlinearity is
odd—in particular, the quadratic terms are absent—neither the reduction func-
tion (from the center manifold theorem) nor the change of coordinates from the
Darboux theorem (to bring the symplectic structure to the standard one) enter
the expansion of the reduced Hamiltonian up to order four. Since the Kolmogorov
nondegeneracy condition involves terms of order at most four, verifying it amounts
to an explicit computation. Including quadratic terms in the nonlinearity compli-
cates matters, but it is necessary for some applications of our results to problems
with a specific structure (for more on this, see Remark 2.2(v) below). On the
other hand, in some situations, which we explore, the presence of a quadratic
term satisfying some conditions can be used for verifying the Arnold nondegener-
acy condition, which also yields the existence of quasiperiodic solutions.

Our main theorems give sufficient conditions for the existence of solutions of
(1.1) which are quasiperiodic in y with n frequencies, where n > 1 is a given
integer. As usual in KAM-type results, for equations satisfying the sufficient con-
ditions, one automatically gets uncountably many quasiperiodic solutions whose
frequency vectors form a set of positive measure in R”. As indicated above, we
are mainly interested in y-quasiperiodic solutions which decay to zero as |z| — oo,
but our general results are flexible enough to deal with other types of solutions,
such as solutions which decay in some of the x-variables and are periodic in the
others (see Remark 2.2(iv) below). Our sufficient conditions are formulated ex-
plicitly in terms of eigenvalues and eigenfunctions of the operator —A —a;(x) and
the third derivative a3(x) := guuu(x,0) of the nonlinearity. In the case n = 2,
we also formulate a condition involving the second derivative as(z) := gyu(x,0).
It is not difficult to show that the conditions are robust: if they hold for some
ai, az (or ay), then they continue to hold if aq, ag (or as) are perturbed slightly.
However, proving that they hold for some aq, as, as is not always so easy and may

become increasingly difficult when one starts imposing structural assumptions on
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equation (1.1). Naturally, the more restrictive the structure, the less freedom one
has to choose the functions so that the given conditions are satisfied. We verify
that the conditions do hold for some radially symmetric a;, as (and all small,
possibly nonradial, perturbations thereof).

The remainder of this dissertation is organized as follows. Our main results
and an informal overview of the proofs are given in Chapter 2. We also show there
examples of functions satisfying our hypotheses. In Chapter 3, we apply a center
manifold reduction to an abstract form of (1.1). In Chapters 4 and 5, we employ
the Hamiltonian structure of the reduced equation: using a Birkhoff normal form
procedure, we write the Hamiltonian in a form suitable for the KAM theory.
This yields, under certain hypotheses, quasiperiodic solutions and completes the
proofs of two of our main theorems. Chapter 6 is devoted to using a different
nondegeneracy condition to apply the KAM theory and derive the existence of
quasiperiodic solutions, allowing us to prove the last of our theorems in Chapter
7. In Appendix A, we verify some of the technical hypotheses needed for the
center manifold theorem, including the smoothness of Nemytskii operators acting

on Sobolev spaces on R¥.

Remark. This version of the dissertation is slightly modified from the original
submitted to the University of Minnesota to address some minor issues in Chapter
7, namely, the construction of the center manifold reduction needs to be modified
to take into account the fact that the linear part of the abstract equation depends
on the parameter. The author is grateful to Professor Peter Polacik for his help

in finding and addressing these issues.



Chapter 2
Main results

In this chapter, we introduce some terminology and give precise statements of our
main results. We also verify our hypotheses for some equations of the form (1.1)
and outline the proofs of the main theorems.

Throughout this dissertation, %, (RY) is the space of continuous bounded (real
valued) functions on RY and %*(RY) for the space of functions on RY with
continuous bounded derivatives up to order k, k € N := {0,1,2,...}. When
needed, we assume that these spaces are equipped with the usual norms. The space
Graa(RY) (resp. €% 4(RY)) is the subspace of 6;,(RY) (resp. €*(RY)) consisting of
radially symmetric functions around 0. In a slight abuse of notation, a function
g € Graa(RY) will be seen either as a function g(x) of z € RY or as a function g(r)
of r > 0. We also denote by L? (R") and HY ,(R") the subspaces of LP(R") and
HY(RY), respectively, consisting of radially symmetric functions about 0. In the

sequel, every radially symmetric function is assumed to be symmetric around 0.

Fix a positive integer N. The main equation we consider is
Au+ uyy + ay(z)u + f(z,u;5,0) =0 for (z,y) € RY x R =RV (2.1)

where a; € 6,(RY), b # 0 and s € R are real parameters, and f is a sufficiently

regular function on RV xR xR2. We will formulate regularity and other hypotheses



on a; and f shortly. Structurally, we will assume f to have the form
flz,u;8,0) =0 (SGQ(%’)UQ + ag(x)u?’) +ut fi (2, u; 5,b), (2.2)

where as, a3 € 6,(RY) and f; : RV x R? — R are sufficiently smooth functions.

For our last result, we consider the equation
Au + uyy, + ay(r; s)u + ag(r; s)u? + wPg(r,u;s) r >0, y € R, (2.3)

where s ~ 0 is a parameter, g is a sufficiently regular function on RY x R,
radially symmetric in the first argument, and we will formulate regularity and

other hypotheses on ay, as and ¢ in the next section.

Remark. Notice that, unlike equation (2.1), the cubic term can be missing in (2.3),

in particular, one can take g = 0.

2.1 Hypotheses

Given integers n > 2, k > 1, a vector w = (wq,...,w,) € R™ is said to be

nonresonant up to order k if
w-a #0forall a € Z™\ {0} such that |of < k. (2.4)

(Here |a| = o |+ - -+ |ay|, and w - « is the usual dot product.) If (2.4) holds for
all k=1,2,..., we say that w is nonresonant, or, equivalently, that the numbers
Wi, ... ,wy are rationally independent. A special class of nonresonant vectors which
will play a role later on is the class of Diophantine vectors, see Chapter 5.
Assuming a; € %,(RY), consider the Schrodinger operator A; = —A — a;(x),
viewed as an unbounded self-adjoint operator on L?(R") with domain D(A4;) =
H?(RY). Fixing an integer n > 2, we make the following assumptions on a;:

(Al)(a) L :=limsupa;(z) <O.

|z|—o00

(A1)(b) A; has exactly n negative eigenvalues p; < -+ < p,, all of which are

simple, and 0 is not an eigenvalue of A;.



Sometimes, we collectively refer to assumptions (Al)(a) and (Al)(b) as (Al).

Remark 2.1. If one is specifically interested in problems with radial symmetry;
that is, when the functions a;, f, and the sought-after solutions are required to be
radially symmetric in z, then one can adapt this hypothesis to the new situation:
rather than considering the Schrodinger operator A; = —A — a; on the full space
L*(RY), one can take its restriction to the subspace L2 ;(R") (the domain of A,
is then H?>

2 ((RM)). This implies that the eigenvalues are automatically simple,

which is not guaranteed when A; is considered in the full space.
In our next hypotheses, K and m are integers satisfying

N
K>6(n+1), m> . (2.5)

We assume the following smoothness and nonresonance conditions on a;:
(S1) a; € EH(RY).

(NR) Denoting w; := +/|u;], j =1,...,n, the vector w = (wy,...,w,) is nonres-

onant up to order K.
Our smoothness requirement on the functions in (2.2) are as follows:

(S2) ay, az € €"THRYN); fi € EEF™HRY x R x R?) and for all 9 > 0, py > 0,
the function f; is bounded on RY x [—1, 9] X [—po, po]? together with all its
partial derivatives up to order K + m + 4.

Hypotheses (A1), (NR), (S1), (S2) are our standing hypotheses throughout
Chapters 3 to 6. In addition, we will assume one of the following two hypotheses.
The first one, (A2), involves the function ag from (2.2) and eigenfunctions of Ay;
thus, in effect, it is a hypothesis on f and a;. The other hypothesis, (A3), concerns
ay only.

Let ¢1,...,p, be eigenfunctions of A; corresponding to the eigenvalues p,

.., M, Tespectively, normalized in the L?*-norm (they are determined uniquely

up to signs).



10
(A2) The n x n matrix M; with entries
()5 = 2= 3) [ @)@ do (= L...on),

where 9;; is the Kronecker delta, is nonsingular.

(A3) The eigenfunctions 1, . . ., ¢, have the following quartic independence prop-
erty: the set of functions {go?cp? : 1 < i < j < n} is linearly independent
in some nonempty open subset U C R¥, that is, the coefficients of any
linear combination of these functions which vanishes identically in U are

necessarily equal to 0.

We make some comments on the hypotheses made here.

Remark 2.2. (i) The sole role of hypothesis (Al)(a) is to guarantee that the
essential spectrum o.4s(A;) of the operator A; is contained in (—L, 0c0) [60]. The
condition ogs(A1) C (—L,00), or any explicit condition which implies this in-
clusion, can safely be used as a hypothesis in place of (Al)(a). Note that, since
0(A1)\0ess(A7) consists of isolated eigenvalues, conditions (A1)(a), (A1)(b) imply
in particular that there is v > 0 such that o(A;) N (—v,v) = 0. Also, it is well
known that, as eigenfunctions corresponding to isolated simple eigenvalues, the
functions ¢;(x) have exponential decay as |z| — oo [3, 4, 58]. In particular, the

integrals in (A2) exist.

(ii) The regularity of f is needed mainly for two reasons. An application of
the KAM theory forces us to a assume a sufficiently high smoothness of f(x,u)
with respect to u. The smoothness of a; and f with respect to x has more to
do with our choice to set up a formulation of (2.1) in the spaces H™(RY) with a
large enough m, rather than in the spaces W??(RY) with a sufficiently large p.
Working in a Hilbert space setting simplifies some considerations, at the expense

of the regularity requirements.

(iii) In our main results, Theorems 2.4 and 2.6 below, the smoothness of the

function f; with respect to the parameters s, b is not relevant, only what happens
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at the quadratic and cubic terms of f is important (see Remark 4.12 for an expla-
nation of this). However, in other theorems, such as the reduction to the center
manifold and the Darboux change of coordinates, it is of interest to know how
the smoothness of f with respect to the parameters reflects in the conclusions of

those theorems.

(iv) The formulation of our hypotheses reflects our main objective to find y-
quasiperiodic solutions which decay to zero as |x| — oo. To search for other types
of y-quasiperiodic solutions, one would need to modify the hypotheses suitably.
Suppose, for example, that a;(z) and f(z,u) are even and periodic in xy with
period 2p > 0, and one wants to find y-quasiperiodic solutions which decay in
x = (x1,...,xy_1) and are even and 2p-periodic in zy. The operator —A —
ay is then to be considered as a self-adjoint operator, with natural domain, on
the space of functions on RY which are even and 2p-periodic in zy and whose
restrictions to RV~! x (—p,p) are in L*(RN~! x (—p,p)). Hypothesis (Al)(a)
has to be replaced by the condition o.ss(A;) C (—L,00) (or an explicit sufficient
condition), and the integrals in (A2) are taken over RV~! x (—p, p), rather than
over RY. The remaining hypotheses can be kept intact. The evenness requirement

can be dropped in this example, although in some specific situations the simplicity

of the eigenvalues, as required in (A1)(b), may not be satisfied without it.

(v) Note that if (A1) is to be satisfied, a; cannot be a constant function. This
is consequential for applications of our results to some specific equations, such
as spatially homogeneous equations (1.1). Indeed, if g = g(u) in (1.1) or, more
generally, if the derivative g,(x,0) is constant, then in (2.1), (2.2) one cannot
simply take the coefficients a; from the Taylor expansion of g at the trivial solution.
Instead, the Taylor expansion has to be taken at a nontrivial solution ¢ = ¢(x).
Such an expansion will typically involve quadratic terms in wu, regardless of any
assumptions on the derivatives of ¢ at 0. Mainly for this reason we insist on

including the quadratic term in (2.2).

When dealing with equation (2.3), we will modify our hypotheses slightly. For
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d > 0 sufficiently small and s € [0, ], we now consider the Schrodinger operator

Ai(s) == —A — ay(r; s) acting on L2 ,(RY) with domain H?2

2. 2 (RM), and assume

the following hypotheses:
(A1’)(a) There exists L < 0 such that limsup,_, . a;(r;s) < L for all s € [0, 4].

(A1) (b) For all s € (0,6], Ai(s) has exactly two negative eigenvalues pu;(s) <
t2(s), and 0 is not an eigenvalue of A;(s). For s = 0, A;(0) has exactly one

negative eigenvalue y1(0), and p2(0) = 0 is an eigenvalue of A;(0).

(S1°) ay(-;s) € € (RYN) for each s, and the map s € [0,6] — ai(;s) €

rad

€ (RY) s of class €% (with K as in (2.5)).

rad

(S2°) ay(+;s) € €7 (RY) for each s € [0,9], the map s € [0,0] — ay(-;s) €
T (RY) s of class €K, g € €K™ H(RY x R x [0,4]), and for all ¢ > 0,
the function g is bounded on RY x [—, 9] x [0, §] together with all its partial
derivatives up to order K +m+4. Also, g = g(x, u; s) is radially symmetric

in x € RV.

(A4) Denoting ¢;(+;s), 7 = 1,2, the eigenfunction of A;(s) associated to p;(s),

normalized in the L*norm, and satisfying ¢;(0; s) > 0, one has

/ as(; 0)5 (5 0)dx # 0.
RN

(NR’) Denoting wj(s) := +/|u;(s)|, 7 = 1,2, the vector w(s) = (w1(s),w2(s)) is
nonresonant up to order K for all s € (0, ].

These hypotheses will be assumed to hold throughout Chapter 7.

Remark 2.3. (i) Since the operator A;(s) is restricted to radially symmetric
functions, its eigenvalues are automatically simple. Moreover, hypothesis
(S17) implies that the eigenvalues py(s) and pa(s) of A;(s) depend continu-

ously on s, see, e.g., [38].
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(ii) As long as the dependence of as and g on s is sufficiently regular (that is,
of class €¥), no further information on how these functions depend on s is
required; in particular, one can consider the case when both functions are

independent of s.

(iii) Note that our framework includes the case g = 0; in other words, the nonde-
generacy condition required to apply the KAM theory can be derived from
the quadratic terms of (2.3).

2.2 Existence of quasiperiodic solutions

A function u : (x,y) — u(z,y) : RY x R — R is said to be quasiperiodic in y if
there exist an integer n > 2, a nonresonant vector w* = (w7,...,w}) € R", and
an injective function U defined on T™ (the n-dimensional torus) with values in the

space of real-valued functions on R such that
u(z,y) = U(Wly,...,wy) (). (xeRY yeR). (2.6)

The vector w* is called a frequency vector of u.

We emphasize that the nonresonance of the frequency vector is a part of our
definition. In particular, a quasiperiodic function is not periodic and, if it has
some regularity properties, its image is dense in an n-dimensional manifold dif-
feomorphic to T".

In our first theorem, we consider one of the following two settings:
(a) b e R\ {0} is fixed and |s| > 0 is sufficiently small,
(b) s € Ris fixed and |b| > 0 is sufficiently small.

We refer to the above assumptions on the smallness of one of the parameters (with
the other parameter fixed) as Case (a) and Case (b). It is understood here that
how small a parameter has to be depends on the other parameter (and the other

given data: the functions a; and f).



14
Theorem 2.4. Suppose that hypotheses (A1), (NR), (S1), (S2) (with K, m as in
(2.5)), and (A2) are satisfied. In both Cases (a) and (b), the following conclusion
holds. There exists a solution u(x,y) of equation (2.1) (with f as in (2.2)) such
that u(z,y) — 0 as |z| = oo uniformly iny, and u(x,y) is quasiperiodic in y. In
fact, there is an uncountable family of such quasiperiodic solutions, their frequency

vectors forming a set of positive measure in R (n is as in (Al)(b)).

In Case (b), Theorem 2.4 is a perturbative result, where the quadratic and
cubic terms in f become small at the same rate, as b — 0. Case (a) is partly a
perturbative result as well, requiring the quadratic term to be small relative to
the cubic term. Note, however, that s = 0 with any fixed b > 0 is allowed in
Case (a). Thus, in the class of functions with no quadratic term, in particular, in
the class of functions which are odd in u, there is no smallness requirement and

Theorem 2.4 is not a perturbative result.

Remark 2.5. The statement of Theorem 2.4 can be strengthened as follows.
For an arbitrary py > 0, if b € [—po, po] \ {0} is fixed, then the conclusion of
Theorem 2.4 holds for all s € {0} U ([—po, po] \ D1), where D; C R is a finite
set; if s € [—po, po] \ {0} is fixed, then the conclusion of Theorem 2.4 holds for
all b € [—po, po] \ D2 where Dy C R is a finite set containing 0. This is explained
in detail in Remark 5.5 and Lemma 5.2, where we also give a general sufficient
condition for the validity of the conclusion of Theorem 2.4. The condition is
formulated in terms of the functions as, agz, but it is rather implicit and hard to
verify for specific choices of these functions (with the parameters s and b fixed),
unless a, = 0. On the other hand, Remark 5.5 shows that the condition is satisfied
for all s, save for isolated values (with b # 0 fixed), if it is satisfied for some s;
and, likewise, it is satisfied for all b, save for isolated values, if it is satisfied for

some b (with s fixed).

In our next theorem, both parameters s € R and b € R\ {0} are fixed and

neither is required to be small.
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Theorem 2.6. Let ay and f1 be as in (S2), and ay as in (S1), where K, m
are constants satisfying (2.5). Suppose that conditions (A1), (NR), and (A3) are
satisfied and let s € R, b € R\ {0} be arbitrary. Then there is an open and dense
set B in 6" (RY) such that the conclusion of Theorem 2.4 holds for each az € B.

We remark that, although it is easy to show that if a; satisfies (A3), then the
set of functions as satisfying (A2) is open and dense, Theorem 2.6 does not follow
from Theorem 2.4. Indeed, Theorem 2.4 states that (A2) is a sufficient condition
for the validity of the conclusion if one of the parameters s, b is small, which is

not assumed in Theorem 2.6.

Remark 2.7. If the functions aq, a, are radial, Theorem 2.6 remains valid if the
space €, (RY) is replaced by €7 (RY) (cp. Remark 5.6 below).

rad

Our last theorem concerns equation (2.3).

Theorem 2.8. Suppose that hypotheses (A1’), (S17), (S27), (NR") (with K, m as
in (2.5) and n =2) and (A4) are satisfied. If 6 > 0 is sufficiently small, then for
each s € (0, 9] the following holds. There ezists a solution u(x,y) of equation (2.3)
such that u(x,y) is radially symmetric in x, u(z,y) — 0 as |x| — oo uniformly in
y, and u(x,y) is quasiperiodic iny. In fact, there is an uncountable family of such

quasiperiodic solutions, their frequency vectors forming an uncountable subset of
R2.

We remark that Theorem 6.3, below, contains a more general sufficient condi-
tion for the existence of quasiperiodic solutions of (2.3), which allows for quasiperi-
odic solutions with any n > 1 number of frequencies. Nevertheless, this condition

is quite difficult to verify for a specific choice of a;, as and g, even if g = 0.

2.3 Validity of the hypotheses

In this section, we give examples of functions aq, ag which satisfy the hypotheses

of Theorems 2.4 and 2.6. First of all, we show the robustness of the hypotheses.
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Proposition 2.9. Let k > 0 be an integer.

(i) The set of all functions (ay,a3) € GF(RY) x €F(RYN) such that conditions
(A1), (NR), and (A2) are satisfied is open in GF(RN) x GF(RY).

(i) The set of all functions a; € GF(RY) such that conditions (A1), (NR) are
satisfied is open in GF(RY), and so is the set set of all functions a; €
GF(RYN) such that all three conditions (A1), (NR), and (A3) are satisfied.

Proof. The results are consequences of standard perturbation results [38]. Suppose
first that (A1), (NR), are satisfied for some a; € €*(RY). The upper semicontinu-
ity of the spectrum, and the continuity of simple eigenvalues imply that (A1)(b),
(NR) remain valid if a; is perturbed slightly in %*(R"). The same is obviously
true of (Al)(a). The simplicity of the eigenvalues implies that the normalized
eigenfunctions ¢1, ..., ¢, can be chosen such that they depend continuously on
a; (in a small neighborhood of the unperturbed function) as H*(R")-valued func-
tions. Standard elliptic regularity estimates allow us to bootstrap this continuity
to eventually show that @1, ..., ¢, depend continuously on a; as W2P(RY)-valued
functions for any p € (1,00), and, in particular, as L*(R")-valued functions. This
implies that if now az € 6*(R") is such that (A2) holds, then (A2) will continue
to hold if a; and aj are perturbed slightly in €*(RY). Statement (i) is thus proved.

For statement (ii), we just need to observe, in addition, that the linear in-
2

dependence of the functions ¢; gp?, 1 < i < j < n, is preserved because of the
continuous dependence of ¢y, ..., ¢, on a; (in a small neighborhood of the unper-
turbed function a;) as LP(RY)-valued functions for any p € (1,00): a simple way

to see this is by considering a suitable Gram matrix of the functions gp?gp?. [l

To find examples of functions a;, az satisfying our hypotheses, we start with

the following statement concerning hypothesis (A1).

Proposition 2.10. There exists a radially symmetric function a; € 6°(RY) such
that (A1) holds.
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Proof. If N =1, take ¢ > 0 and consider an even function a; € ¥*°(R) such that
aj(x) = —1 for |z| > 2, a; = ¢ € R for |z| < 3/2, and the rest of the values of a;
are between ¢ and —1. If ¢ is sufficiently large, then the operator —A — a;(x) has
at least n negative eigenvalues. All these eigenvalues are automatically simple. If
¢ =0, then a; <0 and —A — a;(z) has no eigenvalues in (—oo, 0]. Consequently,
for suitable intermediate values of ¢, —A —a;(x) has exactly n negative eigenvalues
and 0 is not an eigenvalue.

Let now N > 2. A similar continuity argument as above yields a radial poten-
tial such that (A1) holds for the restriction of the operator A; = —A — a;(z) to
L2 ,(RY) (cp. Remark 2.2(iv)), but not necessarily in the full space L*(RY). To
show that (A1) holds without the restriction to L2 (RY), one has to make sure
that A;, in addition to having n negative eigenvalues with radial eigenfunctions,
has no negative eigenvalue with a nonradial eigenfunction (such an eigenvalue is
never simple for a radial potential). This has been done in [55]. More precisely,
Lemmas 2.2 and 2.3 of [55] show that there is a smooth radial function a,(z),
identical to —1 outside a sufficiently large ball, with the following property. The
operator A; has at least n negative eigenvalues with radially symmetric eigenfunc-
tions (all these eigenvalues are simple) and, at the same time, 0 is the minimal
eigenvalue having a nonradial eigenfunction. We now replace a; by a; — d, where
d is a positive constant. This has the effect of shifting the spectrum o(A;) to
o(A1) + d. Obviously, choosing d suitably, we achieve that exactly n eigenvalues
remain in (—oo,0), while all the other eigenvalues are contained in (0,00). The

resulting operator then has all the desired properties. O
Next, we deal with the nonresonance condition.

Lemma 2.11. For any integer K > 1 and any set of negative numbers p; < --- <

n, the set of all € > 0 such that the vector w(e) = (\/|p] + € ... \/|pn| +€) is

nonresonant up to order K is open and dense in (0,00). Consequently, the set of

all € > 0 such that the vector w(e) := (\/|u1| + € ..., \/|1tn| + €) is nonresonant

is residual, hence dense, in (0,00).
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Proof. Obviously, it is sufficient to prove that for any fixed o = (ay,..., ) €
Z™\ {0}, the function € — w(e) - @ has only isolated zeros. This follows, since the
function is analytic in [0, 00), if we prove that it has a nonzero derivative of some
order at ¢ = 0. Suppose that, to the contrary, all the derivatives at e = 0 vanish.
This implies that for all odd positive integers ¢ one has

(03] (7%
R
Ik

- =0.
| |2
Since the |y | are mutually distinct, we conclude from this that a = 0, a contra-

diction. ]

Corollary 2.12. Let a; be as in Proposition 2.10. Then there is € > 0 such that
after replacing a; by ay + €, hypothesis (A1) is satisfied and the vector (\/|u1],
ooy AV lpnl) s nonresonant. In particular, (NR) holds for any K.

Proof. When a; is replaced by a; + €, the eigenvalues p1, ..., pu, of —A — ay get
replaced by 1 —¢, ..., p, —€. The result now follows from Lemma 2.11 (we choose

e sufficient small, so that (A1) remains valid after the replacement). O

We can now easily give examples of functions ay, az satisfying hypotheses (A1),
(NR), (A2).

Example 2.13. Proposition 2.10 and Corollary 2.12 yield a smooth radial func-
tion a; satisfying (Al) and (NR) (for any K). Let as be a smooth bounded
function on RY which is sufficiently close, as a distribution, to d, (Dirac delta),
where z € R is not a zero of any of the eigenfunctions ¢;, j = 1,...,n (the
set of such z is open and dense in RY). Then (A2) holds. Alternatively, one can
take a smooth radial function ag sufficiently close to the “radial J-function” o,
where p > 0 is not a zero of any of the eigenfunctions ¢;, j =1,...,n, viewed as
functions of r = |x| (in this view, the zeros of the eigenfunctions are isolated).
To justify these statements, note that for az &~ J,, the matrix M; in (A2) is

close to the matrix with entries

(2= 6,)622)P22) (i =1,...,m).
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It is sufficient to show that this matrix has nonzero determinant. This follows,
since p?(z) # 0 for ¢ = 1,...,n, from the fact that the matrix whose diagonal
entries are all equal to 1 and the off-diagonal entries are all equal to 2 is nonsingu-
lar. (One can verify this by replacing the first row by the sum of all the rows and

then carrying out an elimination.) The radial case can be dealt with similarly.
Finally, we include hypothesis (A3) into consideration.

Proposition 2.14. For any positive integer K, there exists a radially symmetric
function ay € €5(RYN) such that hypotheses (A1), (NR), and (A3) are satisfied.

rad

Proof. Without loss of generality, we may assume that K > 8. Fix any such K.

As in Example 2.13, we first use Proposition 2.10 and Corollary 2.12 to find
a smooth radial function a; satisfying (A1) and (NR). By (Al)(b), a; has to be
positive somewhere, hence, by (A2)(a), a; vanishes somewhere. Thus, there is
Ry such that a;(z) = 0 for |z| = Ry. We now introduce a radial perturbation
of ay, modifying it near {z : |x| = Ry} only, such that the perturbed function
vanishes identically in {x : Ry < |z| < Ry} for some R; < Ry near Ry. This can
be done in such a way that the perturbation is small, as small as one wishes in the
supremum norm, but the perturbed function is smooth. By Proposition 2.9(ii),
(A1) and (NR) are unaffected by small perturbations.

Thus, we may proceed by assuming that a; is a smooth radial function such
that a; =0 on {z : Ry < |z| < Ra}, for some Ry > R; > 0, and (A1), (NR) hold.
We show that in this situation (A3) is satisfied without any further perturbations
of a;.

Assume first that N > 2. For j = 1,...,n, the eigenfunction ¢, satisfies
Apj + ai(@)p; + 05 =0 in RY. (2.7)
In the radial variable r = |z|, this equation reads as follows:

N -1
90;-’+T@;+(a1(7")+uj)g0j =0, r>0
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Here ¢, = dip;/dr, and we are abusing the notation slightly by writing a; = a,(r),
w; = p;j(r) (and viewing them as functions of » > 0). On the interval (R;, Rs)

the equation simplifies, due to a; = 0:
N -1
pj T Ty = 0. (2.8)
Since p; < 0, the general solution of this equation, and therefore also the solution
@; on (Ry, Ry), can be expressed in terms of modified Bessel functions rescaled by
w; = +/|p;|. More specifically, for some constants Cj;, Cjs one has ¢; = @; on
(R1, Ry), where

@j (7’) = lerlfN/QIN/Q_l(wjr) —+ Cj27,17N/2KN/2_1(ij)' (29)

Here In/—1 and Kyjp—1 are modified Bessel functions of the first and second
kind, respectively. Note that these functions are defined for all r € (0, 00) and are
analytic in this interval (of course, the eigenfunctions ¢, themselves may not be
analytic outside (R, Ry)). The constants Cj;, Cjo cannot be both equal to zero:
otherwise, p; = 0 on [Ry, R,], hence ¢;, as a solution of a second order equation,
vanishes identically on [0, 00), which is impossible for an eigenfunction.

We now recall the asymptotics of the modified Bessel functions as » — co. For

j=1,...,n, we have:

IN/2—1(wj7”) = Cjewjrrfl/%l +O(1/r)),

(2.10)
Knjo-1(w;r) = Cje_wjrr_lﬁ(l +O(1/r)),

with some nonzero constants C’j.

For 1 < j < ¢ <n (we call such indices j, ¢ admissible), define

2wi + 2w, it CH #0, Cp #0,
—2w; + 2w, if Cj1 =0, Cpy #0,
2w; — 2wy it Cj1 #0, Cp =0,
—2w; — 2w, it C;; =0, Cy =0.
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Note that, as r — oo, we have, by (2.9), (2.10),

P3(r) @ (r) ~ 22O, (2.11)

Since (wy, . .., wy) is nonresonant up to order 8, it follows that b(j, £) # b(j’, ')
for all admissible (j,¢) # (5',¢'). We can thus arrange all the admissible indices
in a finite sequence (j(k),(k)), k =1,...,n(n + 1)/2, such that b(j(k),((k)) >
b(j (K", (K)) if k < K.

We now conclude the proof of the proposition by showing that, on (Ry, Rs),
the functions @3¢} = @357, 1 < j < £ < n, are linearly independent. For that

aim, let c;;, 1 < j < £ < n, be constants such that

n l

> cui(r =0 (2.12)

/=1 j=1

for all r € (Ry, Ry). By the analyticity of ¢;, (2.12) then holds for all » > 0. We
rewrite (2.12) as

n(n+1)/2
D cimam B (1) (r) =0, (2.13)
k=1
where j(k) and £(k) are as above. Dividing this identity by r2=2VebtGM-LM e
obtain i)
n(n+1)/2
> oy =0 21
J( 7"2 2N€b(j(1) L)

Since b(j(1),£4(1)) > b(j(k),ﬁ(k:)) for all k € {2,...,n(n +1)/2}, using (2.11) we

obtain

- <ﬁ§(k)(r)g5z(k) (r) =0 forke{2,...,n(n+1)/2},

oo P2—2N eb(j(1),£(1))r 75 0 for k=1
Thus, taking » — oo in (2 14), we deduce that ci)ey = 0. We then successively
divide by r2-2Nebl(k) , k=2,...,n(n+1)/2, and take r — oo to conclude
that cj,em = 0 for k = ,...,n(n + 1)/2. Hence, all the coefficients in (2.12)

must vanish, which proves the desired linear independence.
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The case N = 1 can be treated similarly. This time, for r € (R, Rs) the

eigenfunctions ¢;, 7 = 1,...,n, satisfy
/!
p; + 1505 = 0.
Letting again w; = +/|u;] # 0, it follows that, on (Ry, R2), one has ¢; = ¢;, where
pj(r) = Cine®’" 4 Cjpe™"

with Cj1, Cj2 not both equal to 0. Using an argument based on the analyticity,

very similar to the one used above, our assertion follows. O]

Remark. The results in this section can be easily adapted to address the robustness
of hypotheses (A1%), (NR’), (S17), (S2’), and (A4). For (A1’), let a; be the function
from Proposition 2.10, with n = 2 negative eigenvalues. Replacing a; by a; —
(d — s), with d a suitable positive constant, yields a radially symmetric function
satisfying (A1%). Also, given K as in (2.5), if 6 > 0 is sufficiently small, then,
using that the eigenvalues of A;(s) are isolated, there exists a constant C' > 0
such that p1(s) < C < 0and C > 1/(Kus(s)) for all s € [0,0]. Hypothesis (NR’)

easily follows from this fact.

2.4 An outline of the proofs of the main theo-

rems

In the first step of the proof of Theorems 2.4 and 2.6, we write (2.1) as a system

du1

—— = Ug,

dy (2.15)
D Ay — Flum)

dy 1u1 1)-

Here, for any fixed (s,b), f(u)(x) = f(x,u(x); s, b) is the Nemytskii operator asso-
ciated to f, and A; is the Schrodinger operator —A — aq(x); they are considered

on suitable Hilbert spaces. Under our hypotheses, the linear operator A(uq,us) =
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(ug2, Ajuy) has n pairs of complex conjugate eigenvalues on the imaginary axis, and
the rest of it spectrum does not intersect the strip {\ € C : |Re A| < v}, where
v > 0. Applying a center manifold theorem, we obtain a system of 2n ordinary

differential equations (the “reduced equation”):

é = hl(fan)a

(2.16
n= h2(§77])7 )

whose solutions are in one-to-one correspondence with a class of solutions of (2.15).
Our goal is to find quasiperiodic solutions of the reduced equation near the origin
(which is an equilibrium of (2.15)).

The second step is to write the reduced equation as a Hamiltonian system in
R?" with respect to a suitable symplectic form. The Darboux theorem then allows
us to choose local coordinates in which the system is Hamiltonian with respect to
the standard symplectic structure on R?". Tt is well known by abstract results [48]
that all this can be done; but it is important for us to have the Hamiltonian of the
transformed system in as explicit a form as possible, at least up to the fourth-order
terms in its Taylor expansion. We rely here on known procedures to compute the
expansion for the center manifold, from which we obtain the expansion for the
first symplectic form and, subsequently, for the Darboux transformation.

In the third step, we write the Hamiltonian as the sum of an integrable Hamil-
tonian H® and a perturbation H', which is small in a class of finitely differentiable
functions. This is achieved by bringing the Hamiltonian to its Birkhoff normal
form to a sufficiently high order; the Birkhoff normal form provides the integrable
part, thanks to the nonresonance condition (NR). In the perturbation H', we
include terms of high order of vanishing in (£,7). Again, it is important to have
some understanding of the second and fourth order terms in the expansion of H°
(the third order terms all vanish in the normal form), and, specifically, how the
functions aq, as, az from the original PDE enter into these terms.

The final step consists in verifying that the integrable part HY satisfies the
hypotheses of a suitable KAM-type theorem (we use a theorem by Pdschel [57]).
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Having computed the expansion of the Hamiltonian carefully when going through
the above transformations, we can easily translate a key nondegeneracy condition
from the KAM theorem to a condition on the functions aq, as, az. In the proof of
Theorem 2.4, where one of the parameters is small, the nondegeneracy condition
follows from our hypothesis (A2). In the proof of Theorem 2.6, we verify that
the nondegeneracy condition is satisfied for an open and dense set of functions as.
The KAM theorem yields quasiperiodic solutions to the reduced equation (2.16),
and these correspond to y-quasiperiodic solutions of the original equation (2.1).
For the proof of Theorem 2.8, we show that if ® is the Hamiltonian of the
reduced equation in Birkhoff normal form, under some assumptions it is possible
to find quasiperiodic solutions for the Hamiltonian system corresponding to ® +
®?, from which we find quasiperiodic solutions of the original equation (2.3).
The nondegeneracy condition required to apply the aforementioned KAM-type

theorem will be a consequence of hypothesis (A4).



Chapter 3
The center manifold reduction

In this chapter, we first state an abstract center manifold theorem, based on the
exposition in [35, 70] (see also [21, 48]). Then we write equation (2.1) in a form
fitting the abstract setting, so that the hypotheses of the center manifold theorem

can be verified.

3.1 An abstract center manifold theorem

Let X and Z be Hilbert spaces such that Z < X (continuous imbedding). Con-

sider the following abstract equation with a parameter 7:

du
= =Au+ R(w;1), (tel). (3.1)

Here A € £(Z,X), R : Z xR?* - Z and Z C R is an interval. We are
primarily interested in the case Z = R, and we consider classical solutions of
(3.1), that is, functions u € €1(Z, X) N €(Z, Z) satisfying (3.1). At this point,
the dimension d > 0 of the parameter space R? is arbitrary (d = 0 corresponds to
the equation with no parameters), but in our specific problems we will take either
7= (s,b) € R or 7 = s € R. We also fix an open and bounded set & C R% and

make the following assumptions on R:

25
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(H1) There is a neighborhood V of 0 € Z such that R € €*(V x R¢, Z) for some
k> 2, and

R(0;7) =0, D,R(0;7)=0 (1€ 2). (3.2)

In the following hypotheses concerning the spectral properties of the operator
A, we view it as an unbounded operator in X with domain D(A) = Z C X. While
we assume that Z and X are real spaces, for the spectral properties we consider,

as usual, the complexifications of Z, X, and A.

(H2) 0(A) = 0. U oy, where g, C {z € C: |Rez| > 7} for some v > 0 and o,
consists of finitely many purely imaginary eigenvalues with finite algebraic

multiplicities.

Hypothesis (H2) implies that the resolvent set of A is nonempty; moreover, A
is a closed operator whose graph norm is equivalent to the norm of Z. To the
decomposition o(A) = o, U oy, there corresponds the spectral projection P, €
Z(X), characterized uniquely by the properties that it commutes with A and
that its range X. := P.X is spanned by the set of all generalized eigenvectors of
A corresponding to the eigenvalues in o, (see [38]). Clearly, X, C Z. Letting
P, :=1— P,., we note further that P. and P, restrict to bounded operators on Z.
In particular, P,Z is a closed subspace of Z. When needed, we consider P,~Z as
a Banach space with the norm induced from Z.

The third hypothesis concerns the resolvent of A:
(H3) There exist wy > 0 and ¢ > 0 such that for all @ € R\ (=&, wy) we have:

(a) iw is in the resolvent set of A.

N _ C
(b) [[(iw — A) 1||:/(X) <

@l
Theorem 3.1. Assume that hypotheses (H1)—(H3) are satisfied. Then there exist
amap o € €*(X. x P, P,Z) and a neighborhood A of 0 in Z such that

0(0;7) =0, Dyo(0;7) =0 (7€ 2) (3.3)
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and for each T € & the manifold

Wo(r) = {uo + o(ug;7) s up € X} C Z

has the following properties:

(a) If u(t) is a solution of (3.1) on Z =R and u(t) € A for allt € R, then
u(t) € We(r) for allt € R; that is, W.(7) contains the orbit of each solution
of (3.1) which stays in A" for all t € R.

(b) If z : R — X, is a solution of the equation

dz
i A‘Xcz + P.R(z+o(z;7);7) (3.4)
on some interval Z, and u(t) := z(t) + o(2(t);7) € A for allt € I, then

)
u:Z — Z is a solution of (3.1) on Z.
Moreover, o satisfies the following relations:
(i) o(;7) =0 whenever T € & is such that R(-;7) = 0;

(ii) if 2 < € <k —1 is an integer, then o(u;7) = O(||ul|*™) as u — 0 whenever
T € P is such that R(u;7) = O(||ul|**Y) as u — 0.

Remark 3.2. Since ¢ < k — 1, the notation o(u;7) = O(|Jul|*!) as u — 0 in
(ii) simply means that the derivatives of o(-;7) up to order ¢ vanish at u = 0. If
this is true for all 7 € &2, then, in view of compactness of &, we have o(u;7) =
O(||lu||*1), as u — 0, uniformly for 7 € &2, simply because the derivative of order
(41 is bounded uniformly for u a neighborhood of 0 € X, and 7 € &2. This simple
observation will be used below for other sufficiently smooth functions depending

on parameters.

With the exception of statements (i), (ii), the proof of the theorem can be
found in [35, 70], although a comment on the parameter dependence is necessary

here. In our formulation the manifold W,(7) is defined for all parameters 7 € 2.
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[t is more common to just take 7 in a small neighborhood of some point 7y (such a
local-parameter version of the theorem follows from a version without parameters,
cp. [35, Section 2.3.1], for example). If the center manifold were unique—which
is not the case in general—then, due to (3.2) and the compactness of &2, the
global-parameter version would be a consequence of the local-parameter version.
Nonetheless, such a compactness argument can be made if we recall how the center
manifold theorem is proved, that is, how the function ¢ is found. This is done
by first modifying the nonlinearity outside a small neighborhood .#* > 0 using
a suitable cutoff function, so that the new nonlinearity is globally Lipschitz in u
with a small Lipschitz constant. For the modified nonlinearity, one finds a unique
global center manifold, which then serves as local center manifold for the original
equation in the sense that statements (a) and (b) are satisfied. Our point is that,
under hypothesis (H1), the modification of the nonlinearity can be done once—
with one cut-off function—for all parameters in a neighborhood of the compact
set Z2. One then gets a function o with the stated regularity properties and a
fixed neighborhood .4 such that (3.3) and statements (a), (b) hold.

The uniqueness of the global center manifold for the modified nonlinearity
implies that statement (i) holds: in fact, the center space X, itself is the center
manifold whenever the modified nonlinearity vanishes identically, which is the case
when R(-;7) vanishes identically.

Statement (ii) follows from a recursive computation of the Taylor expansion of
o up to order k (although there is nonuniqueness of o stemming from the choice of
the cutoff function, the Taylor expansion is uniquely determined). The procedure
is described in [36, Section 6] and [48, Section 2] and it goes as follows. The

starting point is the following identity for o:
Dyo(u; T)[A‘X.u—i—PcR(u—i—a(u; T);7)] = A}Xha(u; T)+ PoR(u+o(u;7);7) (3.5)
(cp. equation (2.10) in [48]). Now expand o as

o(u;t) = o (u;m) + -+ ol (us ) + o' (us T),
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where, for j € {2,...,(}, 67 is a homogeneous P}, ~Z-valued polynomial in u of
degree j (with 7-dependent coefficients) and ||o’(u; 7)||z = O(||ul|*"!) as u — 0,
uniformly for 7 € &2. Substituting in (3.5) and equating terms of the same order

one finds an equation for ¢7(-;7), for each 7 € Z:
Do (u; T)A|X u— A|Xh0j(u; ) =1 (u;7), (3.6)

where 7 (-; 7) is determined by the Taylor expansion of R(+;7) at 0 of order j and
the terms o%(;7),...,07 7 (+;7) (if j = 2, r? is determined by P, D?R(0;7) alone).
This equation determines the polynomial o7 (+; 7) uniquely (see [36, 48] for explicit
forms of the solution). An induction argument then allows one to conclude that
R(u;7) = O(||ul|*!) as u — 0 implies o(+;7) = -+ = o'(-;7) = 0, which gives
the conclusion in (ii).

In the sequel, the function o is called the reduction function, X. the center
space, W, the center manifold, and equation (3.4) is the reduced equation.

For us, the most important conclusion of Theorem 3.1 is statement (b): if
we can find a “small” solution of the reduced equation (3.4) (that is, ||2(¢)]|z is
sufficiently small for all ¢), then we have a solution of the original equation via
the reduction function. Our goal is to find quasiperiodic solutions this way. Note
also that the reduced equation is an ordinary differential equation: the space X,

is finite-dimensional due to hypothesis (H2).

3.2 Center manifold for equation (2.1)

We now verify that (2.1) can be rewritten as a system of the form (3.1), with
operators A and R, and spaces X and Z chosen in such a way that hypotheses
(H1)—(H3) hold with £ = K + 1, K as in (2.5) if condition (A1), (S1), and (S2)
are satisfied. The center manifold for equation (2.3) can be obtained similarly,
with some minor changes which will be discussed in Chapter 7.

Fixing an integer m > N/2, as in (2.5), we set X = H™(RY) x H™(RY),
V = 7 = H"P2(RY) x H™(RY). Note that the relation m > N/2 implies
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that H™(RY) is continuously imbedded in a space of bounded Hélder continuous
functions on RY.

Further, we fix any finite py > 0 and set & := (—py, po)? C R2.

Consider the H™ (R )-realization of the Schrodinger operator —A—ay(z), that
is, the operator u — —Au — a;u defined on H™+2(RY). We will view it, as appro-
priate for the context, either as a bounded operator in .Z(H™?(RY), H™(RY))
(which is justified when a € 6"(R")) or as an unbounded operator on H™(R")
with domain H™2(RY). Without fearing confusion, we use the same symbol A;
as in Section 2.1 for this operator, noting that, by elliptic regularity estimates, the
spectrum, the eigenvalues and their multiplicity, as well as the eigenfunctions do
not change if instead of the L?(R™)-realization we take the H™ (R )-realization.

The abstract form of (2.1) is given by

du1 u

— = W2,

zi ) (3.7)
d_y - Alul - f<u17 87b)7

where A is the H™-realization of —A—ay(x), as above, and f : H™2(RV) xR? —
H™H(RN) is the Nemytskii operator of f, that is, f(u;s,b)(z) = f(z,u(z);s,b).
In Appendix A.1, we verify that this operator is well defined.

System (3.7) can be written in the form (3.1) by defining the operator A on
X, with domain D(A) = Z, and R: Z x R* = Z as

Aluy, ug) = (ug, Ayuy)T,

_ (3.8)
R(uy,us; 5,0) = (0, f(ur;s,b)T.

The smoothness of the operator R is inherited from the smoothness of f, which
is shown in Appendix A.1 (see Theorem A.1 and Lemma A.3). More precisely, if
f satisfies (S2), then the map f : H™2(RV) x R2 — H™(RN) is of class €71
and so

Re €V xR? Z). (3.9)

In addition, relation (2.2) implies that R(0;s,b) = 0, D,R(0;s,b) = 0 for all
(s,b) € R2.
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In order to find the spectrum of A, viewed as an unbounded operator on X,

Qo0
U2 U2 g2

where (g1, g2) € X. Equivalently, (3.10) reads

consider the problem

vy — Avy = g1,

—Av — ai(z)vr — vy = go,
and eliminating v, we obtain
—Av; — a1 (z)v; — N?v; = go + Mg, (3.11)
where go + Ag; € H™(RY). From (3.11) we deduce that
o(A) = {£VA: A e a(A)}.

We know that, by (Al), o0(A;) contains exactly n negative eigenvalues p;, j =
1,...,n and the rest of the spectrum is contained in (y% 00), for some v > 0
(see Remark 2.2(i)). We conclude that the spectrum of A contains 2n (purely)
imaginary eigenvalues j:i\/m , with simple multiplicities, and the rest of the

spectrum is contained in {\ € C : | Re A\| > v}. So we can write
o(A) =o0.Uoap,

with o, = {&i\/[p;| : j = 1,...,n} and 03, = 0(A) \ 0.. The bound on the
resolvent of A (hypothesis (H3)(b)) is verified in Appendix A.2. We have thus
verified all the hypotheses of Theorem 3.1.
Hence, Theorem 3.1 with £ = K + 1 applies in our problem. Moreover, fixing
s = 0 and applying statement (ii) (with just one parameter b), we obtain that, as
u — 0,
o(u;0,b) = O(|[ull®) (b € (—po, po))- (3.12)

We now write the reduced equation in suitable coordinates. Denote

wi =/, i=1,...,n.
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The eigenfunction of A associated to %iw; is, up to a constant multiple, (¢;,
+iwjp;)T. (Asin Section 2.1, ¢y, ..., ¢, are the eigenfunctions of A; correspond-
ing to the eigenvalues jy, . . . , ji,, respectively, normalized in the L?-norm). Taking
real and imaginary part, we obtain the center space:

X = {(gaé)T 29,9 € span{p1,...,pn}}

The spectral projection P, : X — X. corresponding to the imaginary eigenvalues

U1 . HUl
(7)) o

where IT is the orthogonal projection of L2(R™) onto span{ei,...,¢,}. Indeed,

of A is given by

IT (or, more precisely, its restriction to H™(RY)) is the spectral projection of A,
associated with the spectral set {p,. .., u,}. Using this, one shows easily that
P., as defined in (3.13), commutes with A. It is obviously a projection: P? = P..

C

Finally, its range is clearly the space X,., thus P. is the spectral projection, as
claimed.
Setting X}, = (1— P.)X, we have H™"! x H™ = X.® X}, and, additionally, the
spaces X, and X, are orthogonal with respect to the (L?(R"))?-inner product.
For j =1,...,n,let ¥; = (¢;,0)7, ¢ = (0, ;)7 so

%:{1/)1,-~;¢n7<-17'”7<n}

is a basis of X.. If

§=(&,...,&) R,
n=(m,....n.) € R,
Vo= (Y1,.. ., : RY — R,
Ci=((,...,G)  RY = R™,

we can write the center space as

Xc:{€¢+77(€>776Rn}7



33
where & - = &0y + - - - + £,00,, and similarly for n - (.
We use (£,7) € R?" as coordinates on the center manifold. Let 6 : X, x & —
P, Z be the reduction function, as in Theorem 3.1. If (g, ) € X, then there exists
a unique (&,n) € R* such that

(9,9) =& v +n-¢,
SO
6(9,g;5,0) = (&b +m-Cs,b).
Thus, we can define o : R** x & — P,Z by
o(&mis,b) =06(E-1+n-Cs,b). (3.14)
Defining further a function A : R** x & — P, 7 as
A& m;8,b) =& b +n-C+o(&m;s,b), (3.15)
the center manifold can be written as
We(s,b) = {A(§,m;5,b) : §,n € R"}.

We next find the matrix of A‘ «. With respect to the basis #. Denoting ¢ :=
(01, -+, ¢n), for any (£,1) € R*" we have

£ n-e n-e
A€ - = A - — —n. Myé) - ¢,
€040 () (Alw) (<M@.@) 0 (M) ¢

where My = diag(p, ..., pn). Therefore, setting

oo
A MOO>

AR (]
n ¢

we find
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To write the reduced equation (3.4) in the coordinates (£,7), we use y for the

time variable and view £, 7 as functions of y: (3.4) becomes

d AN 0
— (£ () = My . P | . .
AR (ﬂ) (gT) ! (f<A<s,n;s,b>;s,b)>

Equivalently, this equation can be written as

é- = hl(gana S7b)7

(3.16)
77 = h2(§7 n; S, b)a

where & = d¢/dy, 1) = dn/dy, and

h1(£77]; va) éT O
h(&,m;s,0) = =M f |
) <h2(§777; s,b)) ’ (nT> : { (Hf(A(@”? 50)); s, b)> }ﬂ

where II is as in (3.13) and {-}4 denotes the coordinates of the argument with
respect to the basis A.

We remark that system (3.7) is reversible (specifically, if (ui(z,y),ua(z,y))
a solution, so is (uy(z, —y), —uz(x, —y))). As a consequence, one can show a
reversibility property of the reduced equation [35, 48], but we do not employ this
additional structure.

The specific form of the nonlinearity, see (2.2), implies the following properties

of the reduction function o.

Lemma 3.3. One has

o(&,m;5,b) = sba®(€,m) + (&, 15 5,b), (3.17)

2

where o is a PyZ-valued homogeneous polynomial in (§,1) of degree 2 and & is a

CE+Y function on R*™ x P of order O(|(€,0)|?) as (&,m) — (0,0), uniformly for
(s,b) € 2.

Proof. Recall that a(&,n;s,b) = 6(£-v+n-(;s,b) (cp. (3.14)), and the quadratic

term in the expansion of (+;s,b) is determined uniquely from (3.6) with j = 2
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(take ¢ in place of o there). For j = 2, the right hand side of (3.6) is given by
P, D?R(0; 7)[u, u]/2. In our specific case,

D2R(0; 7)[u,u]/2 = (0,bsasu?))"  (u = (u1,uy) € Z)

(cp. (3.8), (2.2)). Using this, the uniqueness of the solution of (3.6), and the fact
that the left-hand side of (3.6) is linear in ¢, we obtain (3.17), with 6(&,7; s,b) =
O(|(&,n))?) as (§,m) — (0,0) for each (s,b). Relation (3.17) implies that & is
of class €K1 which also gives the uniformity in (s,b) as stated in the lemma

(cp. Remark 3.2). O

Remark. For the sake of notational simplicity, in the sequel, we sometimes omit
the argument (s,b) from R, o, A, W, h, and other similar functions when there

is no need to emphasize the dependence on the parameters.
The following simple lemma will be useful in Chapter 4:

Lemma 3.4. Let DA(E,n) denote the derivative of A with respect to (€,m). Then,

in a neighborhood of the origin,

DA(E,n)h(&,n) = AA(E,m) + R(A(E,n)).

Proof. Fix (&, m0) close to the origin, and let (£(y),n(y)) be the solution of (3.16)
with (£(0),7(0)) = (£o,m0). Substituting A(£,n) in (3.1), and using Theorem
3.1(b), we obtain

AA (6o, o) + R(MEm0)) = %A(&n)

y=0

= DA n)(E )],
= DA(&,10) (71 (&0, 1m0), hia (€0, m0))
= DA(&,m0)h (&0, m0),

where we used (3.16) to derive the second to last equality. O



Chapter 4
The reduced Hamiltonian

In this chapter, we write the reduced equation (3.16) as a Hamiltonian system
with respect to a certain symplectic structure on R*". Using the Darboux the-
orem, we then transform it locally to a Hamiltonian system with respect to the
standard symplectic form. Finally, employing the Birkhoff normal form, we write
the Hamiltonian as the sum of of an integrable Hamiltonian and a small perturba-
tion. We compute the expansion of the integrable part explicitly up to order four;
this will later allow us to verify a nondegeneracy condition from a KAM theorem.

Throughout this chapter, we assume the standing hypotheses (A1), (S1), (NR),
and (S2) to be satisfied. We use the notation introduced in Chapter 3. In par-
ticular, we use the coordinates (£,7) as in Chapter 3.2 and view the reduction
function o as a function of (£,7) (and the parameters (s,b)) with values in P,Z,
Z = H™P2(RN) x H™HRY), see (3.14).

4.1 The Hamiltonian and the symplectic struc-

ture

Define "
F(x,u;s,b):/ f(z,0;s,b)dv.
0

36
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For (u,v) € Z, and any fixed (s,b) € &, let

H(u,v) = /]RN _71|Vu(x)|2 + %al(x)tﬂ(x) + F(x,u(z);s,b) + %UQ(I') dr. (4.1)
An integration by parts shows that
DH (u,v)(u,v) = /RN (Au(z) + a1 (z)u(z) + f(z,u(x); s, b)) u(z) do
+ /RN v(x)o(x) de.

In other words, (Au+aju+ f(-,u(-);s,b),v) is the gradient, VH (u,v), of H(u,v)
with respect to the (L#(R™))? inner product.
Denoting by J;2 the operator on (L?(R™Y))? given by

0 T
T2 0|’

;2 being the identity operator on L?(R"), we can write equation (3.7) as

Jr2 =

U2

d [w
dy < > = J2VH (uy,us). (4.2)

Written this way, (3.7) fits the context of abstract Hamiltonian systems con-
sidered in [48]. General results from [48] can then be used to show that the
reduction of the equation to the center manifold is the Hamiltonian system with
respect to the Hamiltonian H restricted to the center manifold and with respect
to the symplectic form which is also the restriction of a symplectic form on the
space Z to the center manifold. Lemmas 4.1 and 4.2 below are essentially an
interpretation of these remarks in the coordinates (£,7), and they can certainly
be derived from [48]. But it is simple enough to prove them instead by direct
explicit computations, and we will do it that way. These explicit computations
will also help us find the Taylor expansion of the Hamiltonian up to order four.

Let A be as in (3.15). Recalling that for (£,n) € R**, A(¢,n) and o(&,n) are

elements of the product space Z = H™2(RY) x H™ L (RY), we write them as
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A(fﬂ?) = (A1(€>77)a/\2(§»77)) and O-(£a77) = (01(5777>70-2(£a77))' Define

CI)(&) 77) = H(A(§77l>) = H(ua U) ‘ u=A1(£,m), v=A2(£,1) ((5777) S R2n)' (4'3)

The parameters (s,b) € & will not be specifically included the notation until they
start playing a role again. For now they can be considered fixed.

In the next two lemmas, we show that the reduced equation (3.16) is the
Hamiltonian system corresponding to the Hamiltonian ¢ and the symplectic form
w defined on a neighborhood of the origin of R?" by

w(&n) (ks ta), (F1,12)) =t -t —ta -1 + . Doy (€,m)(t1, t2) Doa(§,m) (t1, t2) d

- Doy(&,0)(t1,t2) Doy (§,m) (Fr, T2) de - ((€,m), (1, t2), (T, 12) € R*"),

RN
(4.4)
where D denotes the derivative with respect to (£, 7). Note that for all (£, 7n) and
(t1,t2) € R?" the values 0;(&,n) and Da;(&,n)(t1,t2) are elements of H™TH(RY),
hence they are functions of € RY. In the integrals above, and similar integrals
below, we suppress the argument x for the sake of notational simplicity.
For (¢£,n) € R?", the (£, n)-dependent matrix of the bilinear map w(€, n) defined
by (4.4) is the block matrix:

S@m:lig]

+/ _V501(€>77)(V502(€>77))z Véal(f,ﬂ)(vn@(fan)): g (45)
RN _Vn0'1(§,77)(V50'2(§,77)) Vnal(f,ﬂ)(vnaz(f,ﬁ)) |
i/'w@@mww&mﬁjw@@mWw&wﬁfw

v | Vy0a(6m) (Veor(§m) " Voo &n) (Vyoa(Em) |

where I is the n x n identity matrix and V¢, V, stand for the usual gradients

written as columns (so the blocks are n X n matrices).

Lemma 4.1. Let h = (hy, ha) be as in (3.16) and w be as in (4.4). For all (§,n)
in a neighborhood of (0,0) and (&,7) € R*™ we have

Do (&,n)(&,7) = w(&n) (k& n), (& 7)). (4.6)
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Proof. Let (-,-) denote the inner product in (L?(R"))2. Differentiating ® with
respect to (&, 7n), we obtain, by (3.8), (4.2), and Lemma 3.4,

D®(&,n)(&,7) = DH(A(E, 7)) DA(E, 1) (€, 7)
<JL2(AA &)+ R(A(E,n))), DAE, ) (, 7))
= <JL2DA 5777) ( )7DA< 777)( >>

Here, writing ¢ = (¢1,...,¢,) and (a,b) € R*,

DA1<f,n><a,b>> _ < o+ Dal<s,n><a,b>> |

DA(§777)(G7 b) = (DAQ(&H)(G’[)) b-p+ DO’2(€a77)<a7b)

thus,
DO (E,n)(E,7) =
= /]RN ( - h2<€777) 2 DO’2(£7T])<h1(£7n)7 h2(§ﬂ7))) (g 2 + DO—l(ﬁu”)(é? 77)) dx
+/RN (h1(&n) -+ Dor(&,m)(ha(&,m), ha(€,m))) (7 - ¢ + Doa(€,n)(€,7)) da.

Since the eigenfunctions ¢, ..., ¢, are L*(R™)-orthonormal,

[ (el (€ - o)de = ~haleon) &

and

/RN(hl(faﬁ) o) (7 - )z = hi(E,1) - 7

Now, o takes values in X, which is (L?(R"))2-orthogonal to X, (cp. (3.13)). It
follows that

[ (el D€ m) € d =,

and similarly for the other integrals involving the product of a linear combination
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of the functions ¢; with Doy or Do,. Thus,
+ [ Do in(s.n). hle.m) Dol n) € ) d

- D02<£777)(h1<€777)7h2<€777))D0-1(£777)<€7 77) dx.

RN

Therefore, with w as in (4.4), we have

DO(&,m)(&,7) = w(&,n) (h(En), (7). O

Below, o denotes the standard symplectic form on R?", that is, the constant
2-form given by
a(&,n) = (EmJEnT (&neRY),

0 I
J = ;

where [ is the identity matrix in R"™.

with the matrix

Lemma 4.2. Let w be the 2-form defined in (4.4). There is a neighborhood of
(0,0) € R>™ independent of the parameters (s,b) € & on which w is a symplectic

form of class €.

Proof. Since o = (0y,03) is of class €% as a Z-valued map (hence also as a
(L?(RY))2-valued map), the matrix-valued function (£,n) — S(&,n), with S(&,7n)
as in(4.5), is of class €%, that is, the form w is of class €.

Since o(£,m) = O((€,7)]?) as (&,m) — (0,0) (uniformly for (s,b) € &),
(w—a)(&n) = O(](&,n)]?) as well. This implies that there exists a neighborhood
of (0,0) € R®" independent of the parameters (s,b) € & on which w is nonde-
generate. A straightforward computation, which we omit, shows that dw = 0,
so w is a closed form. Obviously, the matrix S(&,n) is skew-symmetric. Thus w

is a symplectic form in the aforementioned neighborhood of (0,0) € R?*" for all

(5,b) € 2. O
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Remark 4.3. When the parameters are taken into account, o = (o1, 02) is of
class €5+ in (&,1) € R*" and (s,b) € £, therefore the matrix-valued function
(4.5) is of class €% in (£,1) € R?™ and (s,b) € Z.

We now specifically consider the dependence of w on (s,b) € 22; we write
w(&,m;s,b) for the bilinear map defined in (4.4), stressing its dependence on

(5,0) € & via 0. The following result is a direct consequence of Lemma 3.3.

Corollary 4.4. One has

w(&mis,b) = a(§,n) + s VW& m) + @ (8, m; s, b), (4.7)

where w? and &(-,-;s,b) are 2-forms on a neighborhood of (0,0), w?(&,n) is a
homogeneous polynomial in (§,m) of degree 2 (taking values in the space of skew-
symmetric bilinear maps), and w(£,m;s,b) is of order O(|(&,m)?) as (&,m) —
(0,0), uniformly for (s,b) € 2.

Using Lemma 4.1, we can write equation (3.16) as

d (€
@ (77) = Xo (&), (4.8)

where X4 is the Hamiltonian vector field associated to ® on a neighborhood of

0 € R?*" endowed with the symplectic form w.

4.2 Transforming to the standard symplectic form

We recall the Darboux theorem:

Theorem 4.5. Let w be a €*-symplectic form on a ball around 0 € R** and o
be the standard symplectic form on R**. Then there exists a near-identity €*-
transformation ¢ such that

P'w = a.
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Here ¢*w, the pull-back of w, is the form obtained from w by the change

of coordinates (§,n) = ¢(¢', 7). The effect of the change of coordinates from the

Darboux theorem on Hamiltonian systems is well known: any Hamiltonian system

with respect to the symplectic form w transforms to a Hamiltonian system with
respect to the standard symplectic form a (and the transformed Hamiltonian).

We want to apply this change of coordinates to the symplectic form in (4.4).

It will be useful to choose the diffeomorphism ¢—which is not unique—so that it

satisfies additional estimates, as stated in the following lemma.

Lemma 4.6. Letw be the 2-form defined in (4.4). Then there exist a neighborhood
¥ of (0,0) € R* and a €% map ¢ : ¥ x R* — R?" such that ¢*(-,-;s,b)

w(-, - 8,b) =, and one has

G(E,m;8,b) = (&,n) + s*0°F°(&,m) + H(&, m; s, D), (4.9)

where ¢ : R? — R 4s a homogeneous polynomial of degree 3 and ¢ is (a
map of class €% which is) of order O(|(&,n)|*) as (§,m) — (0,0), uniformly for
(s,b) € 2.

Proof. The statement holds if the map ¢ is constructed in a suitable way. We
recall briefly how the Lie transform method of the proof of the Darboux theorem
goes (see, e.g., [1, 37]).
For ¢t € [0,1], let
w=a+t(w—a),
so wo = o and w; = w. For each (s,b) € &, we seek a family of diffeomorphisms
@' satisfying ¢ = Id (the identity map in R*"), and

((bt)*wt = Q,

so ¢ = ¢! is the desired transformation. Such ¢’ is found as the flow of a t-

dependent vector field X;; namely, ¢’ has the desired property if

wi( Xy, 1) = =, (4.10)
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where \ is a 1-form of class €% on a neighborhood of (0,0) € R?*® such that
d\ = w — a. The existence of such a 1-form is guaranteed by the Poincaré lemma
(because dw = 0), but, again, because of nonuniqueness, some care is needed in

selecting a “good” one. We claim that A can be chosen such that

A& m;5,0) = s NP(€,m) + A(E,m; 8, D), (4.11)

where \? is a 1-form whose coefficients are homogeneous polynomials of degree 3
and \(&,7; 5,0) = O(|(€,m)]Y), as (€,17) — (0,0), uniformly for (s,b) € Z. Indeed,
this follows from Corollary 4.4 if one uses the Lie transform method in the proof
of the Poincaré lemma, which amounts to taking integrals with respect to (£, 7)
of the coefficients of the 2-form w — « (see the proofs in [1, Theorem 6.4.14] or
(61, Theorem 10.39]).

Now, w; — a is of order O(|(&,1)|?) as (¢,1) — (0,0) uniformly in (s,b) € 2,
t € [0,1]; in particular, w; is nondegenerate near (0,0). Thus we can solve (4.10)
for X, uniquely; for this, we just need to invert the (£, n)-dependent matrix of the
bilinear map w; and apply it to the coefficients of the 1-form on the left. This
yields the following form of the vector field X;:

Xi(&,m;8,b) = 2L2X3(E,m) + Xo(&,m; 5,b)

where X3 is a homogeneous polynomial vector field of degree 3 and Xt(f ,1;8,b) =
O(|(&,m[*), as (£,1) — (0,0), uniformly for (s,b) € & and t € [0, 1]. Moreover,
X, and X, inherit the smoothness of & and w: they are of class €% in (€, 7) ~ 0
and (s,b) € 2.

Finally, we take the flow ¢’ of the vector field X;. The vector field X; vanishes
at (£,m) = (0,0) together with its derivatives up to order 2. From this we obtain,
first of all, that near the origin (and for all (s,b) € &) the flow is defined up
to t = 1. Computing the derivatives of ¢' with respect (£,7) by solving the
corresponding ODEs we conclude that ¢ = ¢! has the form as stated in Lemma
4.6. O
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Remark 4.7. Note that (3.6) implies that the term ¢ in (3.17) and, consequently,
the term w? in (4.7) are determined by the quadratic term aou? of the nonlinearity
f only — both are independent of the higher order terms asu® + u'f(x,u;s,b).
Examining the above proof carefully, one can check that the term ¢? is determined

only by w?. This shows that ¢? is determined by a, and is independent of a3 and
fi.

We now examine more closely the structure of the Hamiltonian ®, first in
the original coordinates (£,7) introduced in Section 4.1, see (4.3), then in the
Darboux coordinates from Lemma 4.6. This is the content of the following two
results. We write ®(&, n; s,b) for the Hamiltonian, accounting for its dependence
of the parameters (s,b). Recall that ai,as, a3 are the functions in (2.2) and ¢ =

(P1,---5¢n), ¢; being the eigenfunctions of —A — ay(x) as in Section 2.1.

Lemma 4.8. There is a neighborhood ¥ of (0,0) € R** such that the Hamiltonian
® defined in (4.3) has the following property. For each (£,m) € ¥ and (s,b) € P

one has

n

B nst) =5 Y (-m&+i)+ g [ a@)E o@) o

RN

[\

j=1

b

T /RN as(z)(€ - p(2))" do + V(& n) + D"(&,m;8,), (4.12)

where ®', is a homogeneous polynomial on R®"™ of degree 4 and ®" is a € X -function
on ¥V x P such that ®"(&,m;5,0) = O(|(£,1)°) as (&,n) — (0,0), uniformly for
(s,b) € 2.

The regularity of ®” is in fact one degree higher: it is of class €% *!; we take
¢X here for consistency with the statement of Proposition 4.9 below, where a

degree of regularity is lost due to the Darboux transformation.

Proof of Lemma 4.8. Recalling (2.2), (4.1), and using an integration by parts, we
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write the functional H (u,v) as
1 1,
H(u,v) = 5 (Au(z) + a1 (z)u(z))u(z) de + 3 v (z)dx
RN RN
sb 3 b 3
— u(z)de + = u’(z) dr + Gy(x,u;8,b), (4.13)
3 RN 3 RN

where

u 1
Gl(x,u;s,b) :/ ?94f1<$,19;876)d19:U5/ Q4f1(x7ug;sab>d9'
0

0
According to (4.3), (3.15), to obtain ®(&,n), we need to substitute

u:€’90+0-1(§777;57b)7 71277‘90"‘02(5777;5;1)) (414>

in (4.13). Clearly, by Lemma 3.3, after substituting for u, the last 3 terms of

(4.13) give
%b 2@ ()’ de + Z /RN a3(x)(§ - ()" dz + "(&,7:5,b),

where ®” has the properties as stated in Lemma 4.8 (the function ®”, and later
@, will be modified in the course of this proof).

Next we substitute for w in the first integral in (4.13). Remembering that o,
takes values in the L?(R")-orthogonal complement of span{e, ..., .} (cp. (3.13))
and that both span{ep,...,¢,} and its orthogonal complement are invariant un-
der the operator A; = —A — a;, we are left with the following integrals (omitting

the argument z of the integrands)

%/RN (—AE-9)(E-v) d$+%/w (— Ayo1(&,m8,b))o1(€, 15 5,b) da. (4.15)

The first of these integrals is equal to
I~ .
5 Z 155
j=1

due to the relations A;p; = ujp; and the L*(RY)-orthonormality of {¢1, ..., ¢n}.
The second integral in (4.15) is equal to s*b*®/,(&,n) + D" (€, n; s,b) for some func-

tions @/, " as in Lemma 4.8(a). This follows from Lemma 3.3, noting also that
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o being a Z-valued €%+ function implies that A0, is an H™-valued function of
class €5+,

Finally, substituting v = 1 - ¢ + 02(§,7; s,b) in the second integral in (4.13)

and using the orthogonality again, we obtain the following integrals:

%/RN (n.tp)deJr%/RN (0a(&,7;5,0))°. (4.16)

A similar argument as above shows that the first of these terms is equal to
1~
2 >0
j=1

and the second one is equal to s*0*®(¢,n) + ®”(£,7; s,b) for some functions @,
®” as in Lemma 4.8.
Summing up all the terms obtained above and redefining ), ®”, we see that

the conclusion of Lemma 4.8 holds. OJ

The next proposition says that the structure of the Hamiltonian as given in
Lemma 4.8 remains unchanged after the Darboux change of coordinates given by

Lemma 4.6.

Proposition 4.9. Given (s,b) € &, consider the change of coordinates (€,1) =
o', s,b), where ¢ is as in Lemma 4.6, and let ®(£',1'; s,b) stand for the Hamil-
tonian ® in the coordinates (¢',n') (i.e., the function ®(p(£',n';s,0);s,b)). Then
there is a neighborhood ¥ of (0,0) € R*" such that the conclusion of Lemma 4.8
remains valid with (§,n) replaced by (&',1).

Proof. Substituting (£,n) = ¢(&',n';s,b) in (4.12) and using Lemma 4.6, it is
straightforward to verify that the statement of Lemma 4.8 remains valid (with

some new functions ¥}, ®”) when (&, n) is replaced by (&', 7). O

Remark 4.10. The proof of Lemma 4.8 (see in particular formulas (4.15), (4.16))

reveals that the function @/ in (4.12) is determined by the quadratic terms of

(-, 58,b) = (01(+,+;8,b),09(, - 8, 0)).



47
When applying the transformation (£,7n) = ¢(£',7'; s,b) in (4.12) one gets further
contribution to the new function @) from the cubic terms of ¢(-,-; s,b) only. By
Remark 4.7, this means that @) is determined only by the coefficient as in the

nonlinearity f (and is independent of az and fi).

4.3 The normal form

We now consider the Hamiltonian ® in the coordinates (£',7), as in Proposition

4.9. According to that proposition,

n

B(E 5, = 3 (6P + 1)+ Y [ ala)¢' o) da

j=1

b

5 [ @€ o) do b SPE(E ) + 8 i), (417)
RN

where @/, ®” are as in Lemma 4.8.

The reduced equation (3.16) written in the coordinates (¢,7') is the Hamil-
tonian system corresponding to ® with respect to the standard symplectic form
a. In this section, we will use further changes of coordinates, all of which are
canonical in the sense that they do not alter the symplectic form a.

The main result of this section is the following proposition.

Proposition 4.11. Let kg be an integer with 2 < kg < K/2 — 1, where K is as
in (2.5), and let & = (&', n';s,b) be as in (4.17) and Proposition 4.9. For each
(5,0) € P there is a smooth map ¢ : ¥V — R*™ defined on a neighborhood ¥V of
(0,0) € R*" such that the following statements are valid:

(a) ¢ is a diffeomorphism onto its image, it is a canonical transformation, and

o(&, 1) — (§,7) = O((&M)*) as (§,7) — (0,0).

(b) Making the (canonical) change of coordinates

€ n) =0 n), (&)= (&, ity -5 7Tn)s (4.18)
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let ®(€,7) stand for the transformed Hamiltonian (that is, ®(&,7) is ac-
tually the function ®(¢(€,7);s,b)). Then, setting I; = (£ +77)/2 and
I=(I,...,1,), we have

where ®q is a polynomial in I of degree at most kg, and ®, is of class €%

and of order O(|(&,n)[*5%2) as (£,7) — (0,0).

(c) Dy is given by

b 2 - .
@o(I) = 51 MI+ -1 NI+ P(I), (4.20)

where ]5(]) 15 a polynomaal in I of degree at most kg with no constant, linear,
or quadratic terms, and M, M are n x n matrices with entries independent
of (s,b) (the coefficients of 15([) do depend on (s,b)). Moreover, the matriz
M is given explicitly as follows. Setting

8(i.i) = o [ (@)

40.)1'(,0]‘

the matrix M s given by

O(1,1) 26(1,2) 20(1,n)
20(2,1) ©(2,2 :

: : 20(n — 1,n)
20(n, 1) . 20(n,n — 1) O(n,n)

Remark 4.12. (i) The only specific information on the dependence of the trans-
formed Hamiltonian on the parameters s, b that will be needed below is obtained
from (4.19), (4.20). Just for the sake of completeness, we add at this point that the
precise dependence on s, b of the transformation ¢—and thus of the transformed
Hamiltonian—can be established from the normal-form computations. Namely,
the map ¢ = ¢(£,7;5,b) is of class €528 on ¥ x &, for some neighborhood
¥ of (0,0) € R?". Indeed, the transformation ¢ is the composition of finitely
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many transformations — Lie transforms of homogeneous polynomial vector fields
of degrees ¢ = 3,4, ... The vector field of degree ¢ is determined from the so-called
homological equation (see equation (4.24) below), which is a linear nonhomoge-
neous equation in the finite-dimensional space of homogeneous polynomial vector
fields of degree ¢. The matrix of this linear equation, in suitable coordinates (see
(4.27) below), is diagonal and its right-hand side is a homogeneous polynomial
whose coefficients are at least of class ¢%~2*# in (s,b). This implies that the

corresponding transformation can be chosen of class €% ~2+5.

(i) The matrix M in (4.20) is determined by the function a, and is independent
of az, f1 (and s, b). We give an argument for this in Remark 4.14.

Proposition 4.11 shows that, after a canonical transformation, the Hamiltonian
® is the sum of a polynomial Hamiltonian depending only on I, and terms of high
order. In our application of a KAM theorem, the terms depending only on [ will
be taken as an integrable analytic Hamiltonian, while the high order terms will be
considered as a small perturbation. Knowing explicitly the matrix M will allow
us to verify a nondegeneracy condition for the KAM theorem.

The proof of Proposition 4.11 consists in taking the Birkhoff normal form of
the Hamiltonian ® up to order |(£,7)[?*2*! and computing its terms explicitly up
to order |(&,7)|*.

We start by recalling a basic normal form theorem.

Theorem 4.13. Let ky > 4 and k > ko + 1 be integers, Q C R?" be a domain
containing the origin, and H : Q — R be a €* map. Assume that H = Hy + P,

where . ) )
&+

H2(€777) :ij 2

j=1
P is of order O(|(&,n)?) as (§,m) — (0,0), and w = (w1, ...,w,) is nonresonant
up to order ky. Then there exist two neighborhoods % and ¥ of 0, and a smooth
canonical transformation v : % — ¥ mapping (£,7) € % to (£,m) € ¥ such that
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v(€,7) — (§,7) is of order O(|(€,7)?) as (€,77) = (0,0) and one has
Hov=H,+ 7+ R,
where

(a) Z depends on (§,7) only via I = (I,...,I,), with I; = (& +17) /2, and it is
a polynomial in I of degree at most [ko/2] ([-] stands for the integer part).

(b) R is (of class €* and) of order O(|(&,7)|"*1) as (€,7) — (0,0).

Proofs of this theorem, including algorithms to find the normal form Z, can be
found in many texts on Hamiltonian systems (see [7, 32, 37], for example). The
theorem tells us that we can write our Hamiltonian as in (4.19), but to explicitly
compute the terms of order four (order 2 in I'), we need to recall some steps from
the proof, as found in the above references.

If h and g are € functions on a domain in R?*", their Poisson bracket {h, g}
is defined by

" (Oh dg  Oh 89)
h,g) = gnogy _Ir99 4.92
th g} jz_; (5&' In;  On; 0¢; 422

In the proof of Theorem 4.13 one successively eliminates the nonresonant terms
(as defined below) in the expansion of H. The cubic terms are all nonresonant
and they are eliminated by a first transformation. This transformation alters
terms of degree 4 and higher, but does not change the quadratic terms. The next
transformation eliminates the nonresonant terms from the (altered) fourth-order
terms, keeping the quadratic and cubic terms intact and altering the terms of
degree 5 and higher; and so on.

The transformations in this procedure are always found as the Lie trans-
forms corresponding to a polynomial Hamiltonian (which guarantees that they
are canonical). The key observation here is as follows. Let y, be a homogeneous
polynomial on R?" of degree ¢ > 3 and let v, be the time-1 map of the Hamiltonian
flow with the Hamiltonian y, (v, is defined in a neighborhood of the origin and
it is a near identity transformation). Let now H = Hy + H3 + --- + H; + h.o.t.,
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where Hj is as in Theorem 4.13, H; is a homogeneous polynomial of degree j,

7 =2,...,¢,and “h.o.t.” stands for terms of order greater than ¢. Then
Hovy=Hy+ H3+---+ Hy+ {H, x¢} + hoo.t. (4.23)
Thus, if y, can be chosen such that
{Hz, xe} = —Ho, (4.24)

then the terms of degree ¢ can be completely eliminated. This is always possible,
with a uniquely determined yx,, if ¢ is odd. If ¢ is even, only certain terms of
degree /¢, as specified below, can be eliminated by a suitable (nonunique) choice
of Xe-

In the first step of the above procedure, one takes the (unique) solution x3 of
{Hz, x3} = —Hs. (4.25)

The corresponding Lie transform vz eliminates the cubic terms and alters the

quartic terms as follows (see [7, 32, 37] for details):

1
Ho Vg = HQ + H4 + 5{{]‘12, Xg}, Xg} + {Hg, Xg} + h.o.t.
1

where “h.o.t.” now stands for terms of order 5 or higher and (4.25) was used to
get the second equality in (4.26).

Thus, the new degree-four homogeneous polynomial is Hy + %{Hg, X3} The
second step is to determine which terms in this polynomial can be eliminated by

the next transformation v4. For this, we use the complex coordinates («, ) =
(ala ey O, Bla s 7571) given by
1 . .
(v, By) = E(fj +in, (& —in;)). (4.27)

We remark, without using this fact explicitly below, that when the homological

equation (4.24) is rewritten in the coordinates (a, ) and then as a linear system
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with respect to the basis consisting of the monomials, the coefficient matrix of
the system is diagonal. We employ the coordinates («, 5) only to identify the
fourth-order terms in (4.26) which are eliminated after the next transformation.

Substituting the inverse relations &; = \/Li(ocj —1i5;), n; = \%(ﬁj —iaj), in the
Hamiltonian, we obtain a sum of homogeneous polynomials in («, ) of the same

degrees as before the substitution. For the terms of degree 3 we find

Hy(o,f) = > hyta’s",
J,LEN?
|J|+|L|=3

for some coefficients hg”, which allows us to express x3 as

hé]L J oL
= E S E— 4.2
J,LEN?
|J|+|L|=3

where J = (j1,...,7,) € N*, L = ({,...,¢,) € N" are multiindices, |J| =
Ji4 et g, o =t adr

n

Hy = Hy + 3{H;, x3} in (4.26), we find coefficients h{* such that

and similarly for *. For the fourth order term

Hy(a,8)= > hi*a’B". (4.29)
|J]+|L|=4

We say a term h’Fa’BL is resonant if w - (J — L) = 0; otherwise, it is non-
resonant. Due to the nonresonance assumption on w, for any |J| + |L| < kg, in
particular for |J|+|L| = 4, the term h’a’ 5% is nonresonant if and only if J = L.
Now, the crux of the second step consists in choosing a homogeneous polynomial
X4 (real in the coordinates (£,7)) such that the corresponding transformation v,
eliminates all nonresonant terms in (4.29) while keeping the resonant terms intact.
The final form of the quartic terms in H o v3 01y is then obtained by substituting

(4.27) in the sum of all the resonant terms,

> nlla’p, (4.30)

|J]=2
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and noting that for |J| = 2 one gets h{’a’B37 = —h{/1’, with I = (I,,...,1I,) as
in Theorem 4.13.

To conclude these preparatory remarks, we rewrite (4.30) in a more convenient
way. For any J = (Jp,...,J,) with |J| = 2, there exist two integers 1 < j, < j; <
n such that either j, < j; and

1 ifj=jiorj=j
0 otherwise,

or j; = jo and
2 ifj=9
J, = J=n
0 otherwise.

Therefore, denoting h’'’* = hJ’  we have

n  Ji

SOl B =" W ay, 05,85, By, (4.31)

|7|=2 j1=1 ja=1

Proof of Proposition 4.11. We apply the above normal form procedure to the

1/2

Hamiltonian ® in (4.17). Recalling that w; = |p;|'/*, we start with the canonical

change of coordinates

1
\/—w_jﬁja 77;* = /Wj 1 (4.32)

so the quadratic part of ® becomes

£ =

1 n
CI)Q(&? 77) = 5 Zw](é? + n?)a
=1

as in Theorem 4.13 (needless to say, (£,7) no longer represent the original coordi-
nates on the center manifold). We write the Hamiltonian (4.17) in the coordinates

(&, 1) as follows

@(57 77) = CI)2(§7 77) + qu)?)(gv 77) + b<I>4(§, 77) + SQbQ(PZl(S) 7]) + CI)”(§7 UBEF b)7
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where, with £ = (¢1,...,&,), 0 = (n1,...,m,) and the &, 1} as in (4.32),

waicn) = [ R
3

") du,
Dy(&,m) = /]RN (1 (¢ p)tdz,

(4.33)

and @), " are as in Lemma 4.8 (and (4.17)). Although ®3 and ®, are independent
of n, for consistency we write them as functions of (£,7) anyway.
After the first step of the normal form procedure (cp. (4.25), (4.26)), taking

the unique homogeneous cubic polynomial vector field y3 satisfying
{®2, x3} = — D3, (4.34)
and vz the Lie transform corresponding to sbys, we obtain
P ovy =Dy + Oy + 207 (E,m) + 3262%{<I>3, X3} + h.o.t., (4.35)

where “h.o.t.” stands for terms of order O(|(£,71)]°) (we will not keep track of the
parameter dependence in the higher order terms).

After expanding (¢ - )*:

- - SRIBIAS
(5/'90>4 = Z 5;'15;'25}35;490]'1 PiaPizPia = Z ( TR 1/2 Pi1Pj2Pis Pia>
J1yenja=

..... =1 i (Wi wpwwi)
®, becomes

1 < SASAIAS
Dy(&,m) =~ J1 272 38 >)4 asp;j, .. . ;,d.
4 Z (wjlezwj?,wj4>1/2 RN o o

Setting
1

aspj, ... p;dx
] ] ] \1/2 / J1 Ja I
4(wjle2wj3wj4) / RN

O(j1, 72,3, Ja) =

we can write

o) = > OG- )G - (4.36)
J1seensd

""" Jja=1
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As in the above remarks, we use the complex variables (4.27), so

1

& = E(%‘ —if;), nj= %(ﬁj — iaj).

(This change of variables is used only to identify the resonant terms in (4.36),
and we revert to the variables (§,7) afterwards.) We must now write the product
£1,&,€5,&, in terms of (o, f) = (a1, ..., 0, b1, .., [y). Since resonant terms are
given by (4.31), we seek terms of the form «;af;3,, with j,¢ € {1,...,n}. One
verifies easily that such terms arise from the monomial §;,§;,&;,€;, only if ji1) = j(2)
and j3) = Jj), where ((1),(2), (3), (4)) is a permutation of (1,2, 3,4). For any such
monomial, we have jiy = j2) = j and jg) = j) = ¢ for some j, ¢ € {1,...,n}

and

§j1§j2§j3€j4 = 6]253
1 .
4(@2% 2iaja; B — a?ﬁf — 22@?0@@ — dojou BB

+ 22’04@5]252 - a?ﬁf + 2ia; ;67 + 5?5@2)- (4.37)

If j # (¢, the only resonant term in (4.37) is —ojoufB;0,. If j = ¢, then the
resonant terms are —a;o 300 — (1/4)(a7 57 + o 57). Thus, for any given j, £, the
contribution of 5]253 to the resonant terms is given by —ajauf8;58, if 7 # ¢ and
—(3/2)0432.@2 if j=1¢.

Note that if j = ¢, then there is only one permutation of (7, 7, j,j), whereas
if j # ¢, there are six different permutations of (7, 7, ¢, ¢); thus, the term §;-‘, for
j fixed, appears only once in (4.36), while, for j # ¢ fixed, the term f?ﬁl? = 5?532
appears precisely six times.

These remarks imply that, in terms of («, /),

n j—1

___Z@jjjj 252 GZZ ]],££ ajﬂjozgﬁg—i-

7j=1 /(=1

+ nonresonant terms.



56
Since «;3; = z({f + 77]2.)/2,

j=1

n j—1 2 2
.. €j+77j £§+n§
roY- 30000 (5 ) (S5

=1 ¢=1

+ nonresonant terms.

This can be written, with I; = (& +17)/2, I = (I1, ..., I,), O(j,0) = 0(j,7.0,0),

as

3 no no
Dy(&,m) = 3 Z ©(j,/)I; +3 Z ©(j,0)1;1, + nonresonant terms

j=1 =1
J#L
1
= 5] - M1 + nonresonant terms,

where M is as in (4.21). Here, under “nonresonant terms” we group the terms
which get eliminated after the second transformation in the normal form proce-
dure.

Similarly,
212 [ @/ 1 9,91 ~
5767 | @4(&,m) + 5{@3, X3} ) =s°b 5[ - M I + nonresonant terms,

for some n x n matrix M determined only by ®,(&,n) + {®s, x3}/2. Thus, the
second transformation results in the quartic terms (I- M1+ s2b21M1I)/2, as stated
in Proposition 4.11.

The subsequent steps in the normal form procedure do not alter the terms
up to order 4. Carrying out the procedure up to order 2kg + 1, we obtain, as a

consequence of Theorem 4.13, all the statements of Proposition 4.11. O

Remark 4.14. It will be useful to note that since the matrix M is determined
only by ®4(¢,n) + {®3,x3}/2, it is independent of az. Indeed, ®3 and x3 are
determined by as (see (4.33), (4.34)) and, by Remark 4.10, the same is true of ®.



Chapter 5

An application of a KAM-type
result: proofs of Theorems 2.4,
2.6

In this chapter, we find quasiperiodic solutions of the reduced equation via an
application of a KAM-type theorem. The application is rather standard: after
the results from the previous chapters, we are dealing with a finite-dimensional
Hamiltonian system with an elliptic equilibrium at (0,0) whose frequencies are
rationally independent to a high order. The main issue is the verification of a
nondegeneracy condition. And, of course, we need a finite-differentiability version
of the KAM theorem. We use a theorem by Péschel [57] for this purpose.

To recall the theorem, consider a Hamiltonian H : T" x {2 — R given by
H(0,1)=H(I)+ H'(0,1), (5.1)

where 0 C R" is a domain, and T" is the n-dimensional torus (in other words,
H'(0,1) is periodic in 0y, . . ., 6,, with a common period, 27, say). The Hamiltonian
system corresponding to H is

0=V, H@O1I),

[ =—VyH(0,1). 52)

57
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We make the assumption that H® is analytic on Q and its frequency map

w*(I):= VH'(I) : Q — R" is a diffeomorphism onto its image
Vi={w'{):Ie€Q};

in particular, the Hessian matrix

0*H°
o)

is nonsingular on 2. Moreover, we assume that there is a complex neighborhood
QF of Q,
@ =|J{ceC c—1] <p} (53)

1€Q
with p > 0, such that H° has an analytic extension to 2* whose Hessian is
nonsingular on 2 and w*([) is a one-to-one map of 2 onto its image in C.
The perturbation term H' is assumed sufficiently small (as specified in the the-
orem, see equation (5.8)) in a Holder norm: if ¥ > 0 is a noninteger, || H |4 nxq)

is the infimum of all M satisfying the following inequalities:

|D7H (0, 1) 0 (rnxqy < M for all J € N*", | J| < [¥],

and
D’H(,I)— D’H(0, I D’H(,I)— D’H(), I
oy IDHOD D@D DHED - DO
0.6'cT™ |60 — 6'|9-1¥] I,I'eQ |1 — 1|7 1)
040" I£I

for all J € N?" such that |J| = [J]. Here [¢] is the integer part of ¥ and, for
J = (jl)"'?jﬂ?glw"vén)y

D7 oIVl
A

=g+ F it bt + L
A vector w € R" is said to be k, v-Diophantine, for some k > 0 and v > n — 1,
if
lw-al > kla|™ (aeZ™\{0}). (5.4)
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For k > 0 and v > n — 1, we define

Vi :={w €V :dist(w,0V) > k and w is k, v-Diophantine}. (5.5)

(We only emphasize the dependence on k of the set V, in our notation, since in
our proofs v will always be fixed.)

The following statement is contained in [57, Theorem A].

Theorem 5.1. Let Q, H, p, and V be as above. Suppose additionally that for

some R > 0 one has

O*H° O2HO\ ™
SEl(GE) sk qew (5.6
Fiz constants A\, v and « satisfying
A>v+1>n a>1, ag¢{l/\+j:j¢eN}L (5.7)

Then there exists oxan, depending onn, v, A, p, R (but independent of Q and k),
such that for any k € (0,p/R) and H' € € (T™ x Q) satisfying

||H1H<KM+A+V(TWQ) < K*0kam (5.8)

the Hamiltonian H = H° + H' has the following property. There exists a dif-
feomorphism T : T" x V. — T™ x Q of class € such that for each I € Q with
w*(I) € Vi, the manifold Ty := T(T" x w*(I)) is invariant under the flow of (5.2)
and the solution of (5.2) with the initial condition T (6y,w*(I)), 8y € T", is given
by T(0y + w*(I)t,w*(I)), t € R.

We remark that [57, Theorem A], besides having additional statements, is
more precise in using a weaker norm in (5.8) and giving a stronger (anisotropic)
regularity of the transformation 7.

The stated property of the diffeomorphism 7" can be phrased, as it usually is,
in the following way: T' conjugates the flow of (5.2) to a flow for which each torus

TV x {@}, @ € V, is invariant and whose restriction to this torus is a linear flow
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with frequencies w. The transformation 7" is not necessarily canonical, but this is
of no concern to us.

The theorem provides a class of quasiperiodic solutions of (5.2) whose fre-
quencies cover V.. Of course, to use this conclusion, we want V. # (), or, better,
|Vi.| > 0, where | - | stands for the Lebesgue measure.

In an application of the above results, we want to put our Hamiltonian system
in the framework of Theorem 5.1. We will be working with the Hamiltonian
®(£,7) as in Proposition 4.11. This is the Hamiltonian of the reduced equation
put in the normal form up to a high order (the order is to be specified). We
introduce the action-angle variables I = (Iy,...,I,) € R" 0 = (61,...,0,) € T"
by

(&,n;) = \/2_Ij(cosﬁj,sin0j).
The change of coordinates from (£;,7;) to (0,1) is defined in regions where I; =
EJQ + 77]2 > 0 for all j € {1,...,n}, and it is well known that this transformation
is canonical. Thus, the relation between the Hamiltonian and the corresponding
Hamiltonian system, after both have been written in the (6, I')-coordinates, is as
in (5.2).

The domain 2 we will be working with is
N=Q,={[eR": ¢<I[;<2¢ (j=1,...,n)} (5.9)

where ¢ > 0 is sufficiently small, as specified below (we write €2, when we want
to stress the dependence on q).

In the next lemma, we fix constants a, A, and v such that
3n > aX + A+ v and relations (5.7) hold. (5.10)

One shows easily that such a choice is possible (for example, take a, A\, v as in

(5. 7) with \=v+1rxn, axl).

Lemma 5.2. Suppose the hypotheses (Al), (A2), (S1), (S2), and (NR) are sat-
isfied. Set kg = [K/2] — 1, and let ®(£,7) be as in Proposition 4.11 and M, M
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as in (4.20). Assume further that (s,b) € & is such that the following condition
18 satisfied:

the n x n-matriz M + s*bM is nonsingular. (5.11)

With Q2 as in (5.9), let (0,1), (0,1) € T" x Q, stand for the Hamiltonian ® in
the coordinates (0,1). Fix constants o, A, v satisfying (5.10). Then there exists

q* > 0 such that for each q € (0,q*) the following statements are valid. One can
write ®(0, 1) = H°(I) + HY (0, I), where:

(a) H® is a polynomial in I, and there are R, p > 0 such that (5.6) holds (with
0 as in (5.3)) and the map I — w*(I) = VHO(I) is one-to-one on Q°. We
denote by V' the image of ) under this map w*.

(b) H* € €MAY(T" x Q) and, with R, p as in statement (a) and Sxan =
dxam(n, v, a, p, R) as in Theorem 5.1, there is k € (0, p/R) such that (5.8)
holds and |V,;| > 0 (Vi is defined in (5.5)).

The choice of functions HY, H"' in this statement is naturally given by Propo-

sition 4.11:
272

1 .
HO(I):w-l+b§I-M[+ST]-MI+P([),

(5.12)
HY(0,1)=®(0,1) — H°(I).
In particular, the frequency map is given by
w*(I) = w + b(MI + s*bMT) + VP(I), (5.13)

where the vector polynomial VP(I) has no constant or linear terms.
In preparation for the proof of Lemma 5.2, we estimate the size of the set V,,

when k is proportional to q.

Lemma 5.3. Assume that (5.11) holds. Consider the frequency map (5.13) on
Q = Q, and let V be its range. There exist constants ¢*, my > 0, and C; > 0
(independent of q) such that

H{w € V:dist(w, V) > Ciq}| > miq" (g € (0,q¢%)). (5.14)
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Proof. For ¢ > 0 small, the map w* is a bijection from €2 onto V', such that both w*
and its inverse have a Lipschitz constant independent of ¢. This is a consequence
of (5.13), (5.11). The result follows from this and the following obvious estimate,

where C' > 0 and € > 0 are independent of ¢ and ¢ is sufficiently small:
H{I € Q, : dist(I,08,) > eq}| > Cq". O

Lemma 5.4. Let w*, V be as in Lemma 5.3. Then for all sufficiently small g > 0,

k > 0 one has
[V \ D(k,v)| < erg",

where ¢ > 0 is a constant (independent of ¢ and k).

Proof. Note that for small ¢ > 0 the set V' is contained in a ball of radius 2b||M +
s2bM ||qy/n, hence also in an n-dimensional cube @ with the edge of length 4b|| M +
s2bM ||qy/n. This implies (see, for example, [66, Theorem 9.3]) that

@\ D(s,v)| < erg™ ™,

where ¢ depends only on n, v and b||M + s2bM||. Since V C Q, our assertion
follows. 0

Proof of Lemma 5.2. Let o, A\, and v be as in (5.10). Since K > 6(n+ 1), kg :=
[K/2] — 1 satisfies

K>2p+2>6(n+1)>2([aA+A+v]+1)+3. (5.15)

Define H°, H! as in (5.12), where the notation comes from Proposition 4.11.
Note, first of all, that H° is a polynomial in I. Due to the assumption (5.11),
if ¢* > 0, p > 0 are sufficiently small and ¢ € (0,q*), then H° extends to (the
same polynomial on) € (€, is as in (5.9)), its frequency map w* is one-to-one on
Qf, and for some R independent of ¢ € (0,¢") relations (5.6) hold. This verifies
the properties of H® stated in (a) with some constants p, R, which will no longer

be changed.



63

We denote by V' the image of Q, under the map w* = VH".

Remember that in Proposition 4.11, the Birkhoff normal form is taken up to the
order 2kp + 1, so, in the variables (£,7), H' is a €% map of order O(|(&,7)[*5+2)
as (£,7) — (0,0). In the variables (0,1), H' is a €% map on T" x €, and, since
for I € €, one has I; > ¢ for all j (this controls the singularities introduced
by differentiating \/T]) and |I| < ¢/n, using (5.15) and making ¢* smaller, if

necessary, we find a positive constant C5 such that

HHlHWHHV(TnXQq) < 0Cy® (q€(0,q%)). (5.16)

Recall further that the frequency map w* : 2, — V is as in (5.13). Making
q* smaller if necessary, we find constants C; and my, as in Lemma 5.3, such that
(5.14) holds. With ¢ as in Lemma 5.4, we set C3 := min{C}, m1/(2¢)} and take
k= C3q. Making ¢* smaller again, we achieve that for each ¢ € (0, ¢*) one has
0 < k < p/R and the estimates in Lemmas 5.3 and 5.4 both apply. This yields
[V \ D(k,v)| <myq"/2 and [{w € V : dist(w,0V) > k}| > m1q", thus

ma
Vil > —q"
Vil = S

Finally, let dxan > 0 be the constant in (5.8) (independent of s and §2).
Making ¢* smaller one more time, we make the following hold:
2
q < aéKAM
Then, for ¢ € (0,¢*), kK = Csq, relation (5.16) gives

o _ Ca ,C5

HHlu%aHHv(ﬂrnqu) < C2q3 CQ Kq > CQH afSKAM =K 5KAM,

o (5.8) is satisfied. Thus all statements in (b) have been verified and the proof

is complete. O

We can now give the proofs of Theorems 2.4 and 2.6.
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Proof of Theorem 2.4. Under the assumptions of Theorem 2.4, the matrix M in
(5.11) is nonsingular, hence (5.11) holds if either b # 0 is fixed and s is sufficiently
small (possibly s = 0), or s is fixed and b # 0 is sufficiently small. Lemma 5.2
tells us that Theorem 5.1, with a suitable choice of the constants, applies to our
Hamiltonian ® in the action-angle variables (6, I) and, moreover, |V,| > 0. This
yields, as noted above, quasiperiodic solutions of the corresponding Hamiltonian
system with trajectories contained in T™ x ),: there are such quasiperiodic solu-
tions with frequency vector w*, for all w* € V.. Adjusting ¢ > 0, we can make
these solutions as close to T™ x {0} as we like.

We now reverse all the changes of variables (action-angle variables, normal
form transformation, the Darboux transformation) to get back to the reduced
equation (4.8), and find its quasiperiodic solutions (£{(y),n(y)) with frequencies
covering V. The trajectories of these solutions are contained in a small neighbor-

hood of 0 € R?". For any such solution, we have

A(y),n(y) € &/ (y €R),

where A is as in (3.15) and .4 is the neighborhood of 0 € Z = H™(RY) x
H™ Y (RY) from Theorem 3.1. By Theorem 3.1(b),

Uy) = (U1(y), Ua(y)" =€) - ¥ +n(y) - ¢+ o (&), n(y))

is a solution of system (3.7). Letting

u(z,y) = Ui(y)(z) = &(y) - p(z) + 01(&(y), n(y))(x), (5.17)

where ¢(x) = (p1(z),...,pn(z)) and 0 = (01, 02), we obtain a solution of (2.1).
This solution is quasiperiodic in y, in the sense of the definition given in Section
2.2. The frequencies of the quasiperiodic solutions obtained this way cover the set
V.. of positive measure.

It remains to show that the solution u(z,y) in (5.17) decays to 0 as |z| — oo,
uniformly in y. This follows immediately from the fact that the set {u(-,y) :y €
R} is contained in a compact set—continuous image of a torus—in H™2(RY),
with m > N/2. O



65
Remark 5.5. (a) The above proof shows that if the standing hypotheses (A1),
(S1), (NR), (S2) are satisfied, and (5.11) holds, with matrices M, M as in Propo-
sition 4.11, then the conclusion of Theorem 2.4 holds. The analytic dependence of
the matrix in (5.11) on s and b implies that if (5.11) holds for some s with b # 0
fixed, then it holds for all s, save for isolated values, and, likewise, if it holds for

some b # 0 (with s fixed), then it holds for all b # 0, save for isolated values.

(b) If the parameters (s,b) are fixed, (5.11) can be viewed as a sufficient condi-
tion (assuming also the standing hypotheses (A1), (S1), (NR), (S2)) for the con-
clusion of Theorem 2.4 to be valid. In fact, (5.11) is a condition on the functions
as (which appears in the definition of the matrix M) and ay, which determines
the matrix M, see Remark 4.12(ii). If ay = 0, which is equivalent to taking s = 0,
then this condition just requires that the matrix M be nonsingular. For ay # 0

the condition is rather implicit and hard to verify without parameters.

(c) The nondegeneracy of the Hessian D*H°(I) is called Kolmogorov’s nonde-
generacy condition. Other nondegeneracy conditions (Arnold’s isoenergetic condi-
tion, Riissman’s condition) are also known to imply the existence of quasiperiodic
solutions for Hamiltonian systems in R?". Theorems based on such conditions
could be used here as well, leading to different sufficient conditions in place of
(5.11). However, we stress again that because of the center manifold reduction,
only €* versions of KAM theorems are applicable in our setting, even when the

nonlinearity in the original problem (2.1) is analytic.

Proof of Theorem 2.6. Assume that aq, f; are as in (S2), a, is as in (S1), hypothe-
ses (A1), (NR), (A3) hold, and s, b are fixed with b # 0. As noted in Remark
5.5(a), the conclusion of Theorem 2.4 holds provided az € %" (RY) is such that
(5.11) holds. Thus, in order to prove Theorem 2.6, all we have to do is show
that the set B of all az € "™ (RY) for which (5.11) holds is open and dense in
GrH(RY).

To stress the dependence on az, we write the matrix in (5.11) as M(a3) +
s2bM (M is independent of a3, see Remark 4.12(ii)). Obviously, M(as) depends
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continuously on a3 which gives the openness of B.

To prove the density, we first find by € L2(RV) such that
/ Bg(x)gpf(x)g;?(x) de =6, i,j€{l,...,n}, (5.18)
RN

where 0;; is the Kronecker delta. Such by exists, due to the linear independence
2

of the functions ¢??, 1 < i < j < n, since the linear operator
©; P J

b3 +—> (/ bg@?(ﬂ? dx)
RN 1<i<j<n

is easily verified to be surjective onto R™"+1/2,

Next, we approximate bs by bs € %°(RY) so that

<e€

/R bs(@)¢l(0) () do /R bal)} (@) (@) da

for all 1 <i,7 < n. If € is sufficiently small, then the matrix M (b3) is nonsingular:
det M (b3) # 0, and we fix such bs.
Now, for any a3z € " (RY) and t > 0, we have

det(M (a3 + tb3)) = det(M(a3) + tM(b3)) = t" det (%M(ag) + M(bg)) #0

if ¢ is sufficiently large. Thus ¢ — det(M (a3 + tb3)) is a nonconstant analytic
function, so we can find arbitrarily small ¢ > 0 such that det(M (a3 + tbs)) # 0.
This proves the density of B. O

Remark 5.6. Clearly, the above proof works in the radial setting—with the
space 6" (RY) replaced by €71 (RY)—if a; and the eigenfunctions ¢y, ..., ¢,

rad

are radial.



Chapter 6

An application of a KAM-type

result using Arnold’s condition

This chapter is devoted to obtaining the existence of quasiperiodic solutions of the
Hamiltonian system corresponding to the Hamiltonian ® (derived in Proposition
4.11), using Arnold’s isoenergetic nondegeneracy condition, which will be stated
below (see (AN)). This will be done by considering a suitable modification of
the Hamiltonian & for which Kolmogorov’s condition (cp. Remark 5.5(c)) holds.
Throughout this chapter we do not assume smallness of either s or b in (2.2).

The following proposition and further considerations in this chapter are based
on [14].

Proposition 6.1. Let Q C R™ be a bounded domain. Let G : T" x 2 — R be a

Hamiltonian of class €% of the form
G0,1)=G(I)+G*(0,1),

which satisfies |G(0,1)| < 1/4 for all (0,1) € T" x Q. Let 4(0,1) := G(0,1) +
(G(0,1))*. Write
9(6,1) = 9°(1) + 90, 1),

67
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where

G°(I) = G°(I) + (G°(1))?,
G 0,1)=%9(0,1) —94°(I).

Assume 9 satisfies the hypotheses of Theorem 5.1, with 4° and 4 in lieu of H°
and H*, respectively, and |9 (0,1)| < 1/8 for all (0,1) € T" x Q. Let w* = V¥ be
the frequency map corresponding to 4°, T be the diffeomorphism from Theorem
5.1 (applied to 4G ), and I* € Q be such that w*(I*) € V,;, with V,; the set defined in

(5.5). Then there exists a constant ¢ such that the manifold T (T™ x { W (1) }

1s invariant under the flow of
[ =-V,G,1), '

and the solution of (6.1) with the initial condition T (6, ﬁw*([*)), 6 € T", is
given by

T (90 + (1)t w*(]*)) , (tER). (6.2)

Note that since w*(I*) € Vj, the solution in (6.2) is quasiperiodic, with fre-

1+ 2" "1+ 2¢

quency vector ﬁw*([ *).  Thus, the proposition implies that the problem of
finding quasiperiodic solutions of the Hamiltonian system corresponding to GG can
be reduced to finding such solutions for the system corresponding to ¢, as long
as ¢ satisfies the hypotheses of Theorem 5.1. Of course, this result is of interest
when the estimate (5.6) does not hold for the Hamiltonian G, in which case we
will show that, under some assumptions on G (see (AN) below), the Hamiltonian

¢ satisfies (5.6).

Remark 6.2. Suppose [*, J* € Q are such that w*([*), w*(J*) € V,, and
denote by ¢(I*) and ¢(J*) the constant from Proposition 6.1 applied to I* and J*,
respectively. Since the map 7" from Theorem 5.1 is a diffeomorphism, it is easy to
see that the corresponding solutions of (6.1) given by (6.2) are distinct provided

1 *(T* 1 * *
1+2—c(I*)w (U#HZ—(:(J*)W(J)’
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in particular, this condition holds if w*(I*) and w*(J*) are not multiples of each

other.

Proof of Proposition 6.1. Since the manifold T'(T™ x {w*([*)}) is invariant under
the Hamiltonian vector field of ¢, it is contained in the level set (relative to 4)
M :={(0,1) e T"xQ:9(0,1) =€}, for some € € (—1/8,1/8). This set coincides
with the e*-level set of G for ¢* := (1/2)(—1 + /1 + 4¢), as found by taking the

inverse of the map

te <\/—_2,\/6_2

I 1 ) =124t € (—1/8,1/8).
The gradients of ¢4 and G are related as follows:
VY(0,1) =V (GO,I)+ (GO, 1)) = (1+2G(0,1)VG(0,1); (6.3)
in particular, when V¥ and VG are restricted to M., one has
VY(0,1)

= (14 2¢")VG(9, 1) (6.4)

M. M.
It follows that, up to a multiplicative constant, the Hamiltonian vector fields of
G and ¥ coincide when restricted to M,.

By Theorem 5.1, the solution of
0=V,90,1),
I=—-Vy9(0,1),
with the initial condition T'(6y,w*(I*)), is given by T'(6p + w*(I*)t,w*(I)). Us-
ing (6.4), it is easy to see that the solution of (6.1) with the initial condition

T(0o, ﬁw*([*)) is given by (6.2), with ¢ = €*. This in turn implies that the

manifold T (T" x { 5.w*(1*)}) is invariant under the flow of (6.1). O

(6.5)

Remark. The hypotheses |G(0, )| < 1/4 for all (6,1) € T™ x ) is only relevant to
ensure 1+ 2G(0,1) # 0, and it will clearly hold in our setting by our choice of 2
(cp. (5.9)). Alternatively, one could multiply the term (G(6,I))? (in the definition
of 4) by (4supg pernxq G(0,1))~". The sole role of the hypothesis |4(6, I)| < 1/8
for all (0, 1) € T" x Q is to ensure the invertibility of the map t — t* + ¢.
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Let &, &y and ®; be as in Proposition 4.11. For (0,1) € T™ x Q, with  as in

(5.9), let
GUI) :=w -1+ ®y(I)

(6.6)
GYO,1):=®(0,1) - G°(I) = ®,(0,1),
and define the matrix
GO 0G°
oz D a7 ("
M(I) = (6.7)
GO
a0

0GP

(we consider 5 A arow vector). We make the following assumption on M:
(AN) The (n+1) x (n+ 1) matrix M(0) is nonsingular.

Hypothesis (AN) is called Arnold’s nondegeneracy condition, or the isoenergetic
nondegeneracy condition.

Define the Hamiltonian
G0,1)=®(0,1)+ (90, 1)) (6.8)
This Hamiltonian can be written in the form (5.1) by setting

H(I) = G*(I) + (G"(1))*

HY0,1) = G0, 1) + 2G° ()G (0, 1) + (G (6, 1))>. &)

We can now state the main result of this chapter:

Theorem 6.3. Assume hypotheses (A1), (NR), (S1), (S2), and (AN) are satis-
fied, and let s € R, b € R\ {0} be arbitrary. Then there exists a solution u(z,y) of
equation (2.1) (with f asin (2.2)) such that u(z,y) — 0 as |x| — oo uniformly in
y, and u(x,y) is quasiperiodic in y. In fact, there is an uncountable family of such

quasiperiodic solutions, their frequency vectors forming an uncountable subset of
R™ (n is as in (A1)(b)).
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Remark 6.4. If one is interested in solutions which are radially symmetric in x,
one can also consider the version of hypothesis (A1) adapted to this setting, as
mentioned in Remark 2.1.

Proof of Th 6.3 Ifa2q)0
TooJ O eorem 0.0. 8[2

sequence of Theorem 2.4 and Remark 5.5(b), since (5.11) will hold for all I €
if ¢ > 0 (cp. (5.9)) is sufficiently small.

(92(130 82G0 L : 0 1
572 (0) = 572 (0) is singular. For ¢ as in (6.8) and H”, H
as in (6.9), we will verify the hypotheses of Theorem 5.1. We start by proving the
existence of R > 0 such that (5.6) holds. Note first that

(0) is nonsingular, then the result is a direct con-

Now we assume

0*H° 0 OPGO 0G° 0G°
W(D = (1+2G°(1)) EYE (1) +2w(1) ® W(I)’
where, for vectors v = (vy,...,v,), w = (wy,...,w,) € R" v ® w is the exterior

product of v and w, i.e., (v ® w);; = v;w,.
Also recall the following determinant identity for block matrices: if Aisanxn

matrix and v, w € R"™ are (column) vectors, then

A
! =det A — det(A+ v ®@w). (6.10)
wl 0
2G0
Applying this identity to the matrix M(0), and using that 52 (0) is singular,
02GO 0GY 0G°
det M(0) = —det <W(O> + 51 (0) ® i (0)).

Recalling that G°(0) = 0, we obtain

0*H° 9*GY oG 0G°

detW(O) = det (W(m +2 i (0) ® a1 (0)) = —2det M(0) # 0,

where the last identity is obtained by applying (6.10) with 2w in place of w.
Thus, there exists B > 0 such that (5.6) holds for H® if ¢ > 0 is sufficiently
small. The verification of (5.8) can be carried out as in Lemma 5.2, using the

following remark. The map ®; (as in Proposition 4.11) is a €% map of order
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O(|(€,7)]**2+2) as (£,77) — (0,0), so in the variables (6, 1), ®; is a €% map on
T" x Q, of order O(|I|*#*1) uniformly in § € T". By (6.6) and (6.9), clearly the
same applies for H'(0,1).

Taking ¢ > 0 smaller if necessary, one has |®(0,1)| < 1/4 and |¢4(0,1)| < 1/8
for all (6,1) € T x €, so all hypotheses of Proposition 6.1 are satisfied (with
G = ®). In addition, the set V, (defined in (5.5)) has positive Lebesgue measure,
so there exists an uncountable set W, C V.. such that no two elements of W, are
multiples of each other. Let Q" be the preimage of W, via the frequency map
w*(I) = VH(I). For each I* € QW we apply Proposition 6.1 to find a quasi-
periodic solution of the Hamiltonian system corresponding to the Hamiltonian
¢ with frequency vector 1Jrf([*)w*(f *), where we denote ¢ = ¢(I*) the constant
in Proposition 6.1. Since the map I € QW 1+%(I*)w*(f*) € R" is injective,
the corresponding solutions not only are distinct (cp. Remark 6.2), but their fre-

quency vectors are distinct as well. The rest of the proof is the same as the proof

of Theorem 2.4, so we omit the details. O



Chapter 7

Proof of Theorem 2.8

In this chapter we prove the existence of quasiperiodic solutions of (2.3), that is,

of the following equation:
Au + uyy, + ar(r; s)u + ag(r; s)u? + wPg(r,u;s) r >0, y €R, (2.3)

where a; and ay are sufficiently smooth, radially symmetric functions, s € [0, ] is
a parameter, with 6 > 0 sufficiently small, and ¢ is a sufficiently smooth function.
Our purpose is to find the existence of y-quasiperiodic solutions of (2.3) using the
results from Chapter 6. Throughout this chapter we assume hypotheses (A1),
(S17), (S27), (NR’) (with K, m as in (2.5) and n = 2) and (A4) are satisfied.

In order to prove Theorem 2.8, we will show that hypothesis (A4) implies
that hypothesis (AN) from Chapter 6 is satisfied by the reduced Hamiltonian
corresponding to (2.3) for all s € (0,0) if 6 > 0 is sufficiently small. Once this has
been established, Theorem 2.8 will be a direct consequence of Theorem 6.3.

We start by noting that the construction from Chapters 3 and 4 applies to
equation (2.3) as well, with some minor changes to account for the role of the
parameter s, which is different from the role of s in (2.2). We discuss those
changes here.

The first difference from the foregoing construction is how the smoothness

of the reduction function on the parameter s is obtained. Let m > N/2, X =

73



74

(RN), and Z = H™T*(RY) x H™(RY). Denote p;(-;s) the
®Y))

associated to u;(s), j € {1, 2}, normalized in the L*-norm, and such that ¢;(0; s) >

Hm+1 (RN) x H™

rad rad

eigenfunction of A;(s) :== —A—a;(r; s) (acting on L2 ,(RY) with domain H>

rad rad

0. The center space X, is now

Xe(s) == {(h,1)" : h, b € span{ip: (-5 5), pa(+5 )} }-

The abstract form of (2.3) is given by

du_
jgz | ) (7.1)
oy Ar(s)ur — f(uiss)
We rewrite this further as
d_u = A(s)u+ R(u; s), (7.2)
dy
where u = (uq, usg),
A(s)(u, up) = (ug, Ay (s)ur)?, (73)

R(uy, ug; s) = (0, f(ur; )"
Here, for each s € (—4,6), A(s) is considered as an operator on X with domain
D(A(s)) = Z, and R as a €5 l-map from Z x (—4,0) to Z.

Because of the s-dependence in the linear operator A(s), we cannot refer to
the construction from Chapter 3 for the €% l-regularity in s—in Theorem 3.1,
parameters appear only in the nonlinearity R—and we need to prove the existence
of o differently. We derive it from standard center manifold theorems using the
fact that A(s) depends on s in its bounded part only.

Write equation (7.2) in the form

du _
o = Aou + R(u; s), (7.4)

where Ay := A(0) and R(u;s) = (A(s) — Ap)u + R(u;s). Due to (S17), (S27),
R: 7 x (—6,8) — Z is of class €K1 just like R. Multiplying R by a suitable
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cutoff function on the Hilbert space Z x R, one finds a (fbKH—map R:ZxR—Z
having a sufficiently small (global) Lipschitz constant and satisfying R=Rona
small neighborhood of (0,0) € Z xR, say, on A x (—dy, dy) (-4 is a neighborhood
of 0 € Z and y € (0,6)). One then applies the global center manifold theorem

to equation (7.4) with R replaced by R, augmented by the “stationary-parameter
equation” ds/dy = 0 (cp. [35, 70]). This yields a € '-map 7 : X.(0) x R +— Z
taking values in P,(0)Z, such that for each s € R

We(s) :={w+a(w;s) :w e X.(0)} (7.5)

is the global center manifold for (7.4). This means, by definition, that W¢(s) is
the set of all points ug € Z with the following property: there is a solution u(y)
of (7.4) defined for all y € R such that u(0) = ug and

sup ||u(y)||ze_6|y| < oo (e>0).
yeR

In particular, since u = 0 is a solution of (7.4) due to the relation R(0,s) =

R(0,s) =0, one has (0,s) = 0 for all s € (—dp,dp). The applicability of [35, 70]
to (7.4) is verified in the same way as in Section 3.2.

If s > 0 and it is small enough, W¢(s) can be written as the graph of a map
(5 8) : Xe(s) — Pu(s)Z. To find 7, for w € X.(0), write w + &(w; s) as

w+5(w; s) = Po(s)(w + 6(w; 8)) + Pu(s)(w + (w; 5)). (7.6)
Given any v € X,(s) = P.(s)Z, we want to solve the equation
Pe(s)w + Pe(s)a(w; s) = v (7.7)
for w € X,(0). To that goal, define, for any s € [0, &),
Q(5) == Pe(s)P(0) + Pu(s) Pu(0) € Z(X) (7.8)

and note that Q(0) = Ix—the identity on X, and Q(s)w = P.(s)w for w € X.(0)
(in particular, Q(s) takes X.(0) to X.(s)). As mentioned above, P.(s) € .Z(X)
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is of class €% in s € (—dy,dp), hence Q(s) € £ (X) is such as well. Tt follows
that for sufficiently small s > 0 (say, for s € [0,0;), with some §; € (0, d]), the
inverse Q71(s) € Z(X) exists and is of class €% 1! in s. For such s and for any

v € X.(s), equation (3.2) can be equivalently written as
w = Q7 (s)Pe(s)v — Q' (5) Pul(5) Pa(0)5 (w; s) (7.9)

(we have used the relations Q(s)w = P.(s)w, P.(s)v = v, and 6(w; s) = P,(0)a(w; s)).
Since & is of class 651! and P.(0)P,(0) = 0, we observe that if 6, € (0,6;) is
small enough, then the map on the right-hand side of (7.9) is a 1/2-contraction in
w € X (0)—assuming the norm from X on X.(0)—for all s € [0,d2) and v € X
(not just v € X.(s)). The uniform contraction principle implies that equation

(7.9) has unique solution w € X.(0) given by
w="T(v,s), (7.10)
where T : X x (=0, 02) = X.(0) is a €K+ map. We now define & by
a(v;s) := Pu(s)(Y(v,s) +a(L(v,s);s)). (7.11)
Clearly, 7 : X x [0,85) — Z is of class €% and, by (7.6),
We(s) ={w+a(w;s):w e X(0)} ={v+a(v;s):ve X(s)} (7.12)

To conclude, define o : R* x [0, d,) — Z by

(&) = a(€-v(s) +n-C(s)is) (&) €RY, s €0,8)), (7.13)
with 9(s), C(s) given by ¥(s) = (¢1(s), ¢2(s)), ((s) = (Ci(5), Ca(s)), for
Ui(8) = (95(55),0)",  G(8) = (0,95(35))". (7.14)

Since the functions ¢;(-; s) € H™2(RY) are of class €% in s, o is of class €K1,
It is straightforward to verify the statements of Theorem 3.1 as in Section 3.2.
The rest of the construction follows as in Chapter 4, only without distinguish-

ing terms which are small in the parameters s or b from (2.2). (Note that the role
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of the parameter s in (2.2) is different from the role of s in (2.3).) After the Dar-
boux transformation (cp. Lemma 4.6), the Hamiltonian of the reduced equation

takes the form

B(E5) = 5 2P+ ) +3 [l oo+

+ @4(&' 1y s) + (¢ 1y s), (7.15)

where p; = p;(s), p; = ;(-;s) for j € {1,2}, ®, is a homogeneous polynomial in
(€',1') of degree 4 and ®” is of class € on (¢/,1'), of order O(|(¢',1')]°) uniformly
for s € [0, 0].

Lastly, Proposition 4.11 is modified as follows:

Proposition 7.1. Let kg be an integer with 2 < kg < K/2 — 1, where K is
as in (2.5), and let & = (&', n';s) be the Hamiltonian in (7.15), that is, the
Hamiltonian of the reduced equation corresponding to (2.3), written in Darboux
coordinates as in Lemma 4.6. Let w = w(s) be the vector defined in (NR’). Then
for each s € (0,0] there is a smooth map ¢ : ¥ — R* defined on a neighborhood
¥ of (0,0) € R* such that the following statements are valid:

(a) ¢ is a diffeomorphism onto its image, it is a canonical transformation, and

o(&, 1) — (§,1) = O((En)*) as (£,1) — (0,0).

(b) Making the (canonical) change of coordinates

&) =0, (&7):= (1,5, M, ), (7.16)

let ®(&,7;8) stand for the transformed Hamiltonian (that is, ®(&,7;s) is
actually the function ®((E,7);s)). Then, setting I; = (£ + 7?)/2 and
I = (I, 1), we have

O, 7)) =w- T+ Po(1) + D1(E,77), (7.17)

where ®q is a polynomial in I of degree at most kg, and ®, is of class €%

and of order O(|(&,n)|**2%2) as (&,7) — (0,0).
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(c) Dy is given by
1

o(l) = 51+ MI + P(I), (7.18)

where ﬁ([) 1s a polynomial in I of degree at most kg with no constant,
linear, or quadratic terms, and M 1is a symmetric 2 X 2 matrix with entries

depending continuously on s for all s € (0,9).

Our purpose is to understand the asymptotic behavior of the components of
the matrix M (in (7.18)) as s — 0 or, equivalently, as ws — 0, the equivalence
being a direct consequence of (A1’)(b) and Remark 2.3. In order to do this, we
need to study the asymptotic behavior of the terms of degree 4 introduced by the
Birkhoff normal form computation, more precisely, the terms introduced in the
first step of the algorithm (see (7.23) below).

We begin with some preliminary computations. Let ®(£,7'; s) be the Hamil-
tonian from (7.15), and denote by ®y, &3 and @4 all the terms in & of degree 2,
3 and 4, respectively, in (£, 7).

Remark 7.2. Note that the coefficients of ®,(¢',7/), j € {2, 3,4}, are uniformly
bounded for s € [0, d].

Consider the change of variables
! 1 . [ . .
gj_\/_w—jéjv M = /W55,
for j € {1,2}. Here w is the vector defined in (NR’). (Of course, (£,n) no longer
represent the original coordinates on the center manifold.) The quadratic part of

® becomes
2

Do(, 15 8) = %Z%(&f +1775).

j=1
Remark. In an abuse of notation, we denote by ®5(&,7n;s) the function ®5(£(¢'),

n(n'); s), and similarly for other functions.

We now write the cubic terms of ®, that is,

a2

B = [ B (7.19)
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explicitly in terms of (§,7):

2

2
£185255:
(€ 90)3 = Z 5}1£}2£§3¢j1@j2@j3 = Z %wjlezwjm

J1,J2,3=1 G1,ja.ga=1 N J1TI27 I8
SO
P ce) — 1 - £j1£j2§j3 d
3(5777’ 8) a § (w, RIRAP )1/2 N 2P j1 P2 Pijz AL
Jigasja=1 " J1TI2TIS R

(Even though @3 is independent of 7, for consistency we write it as a function of
(&,n) anyway.) For j, k, ¢ € {1,2}, set

) 1
Os3(j, k. l;s) = W /RN a2 Prped, (7.20)
SO )
By(&,m55) = Y O3k, 6 9)EEke, (7.21)
i l=1

Lemma 7.3. Let j, k,( € {1,2}. Aswy — 0 (that is, as s — 0),
O3(j, k. £55) = Oy THH2),

In particular,
@3(27 27 2’ S) = O<w2_3/2)7

and if (3, k,0) # (2,2,2), then
03(j, k., l;5) = O(wy ).

Proof. By the continuity of the maps s € [0, 6] = aa(+;s) € 6" and s € [0, 0]
wi(s) € LP (RY) for 1 < p < oo and j = 1,2, it follows that the integral
on the right hand side of (7.20) is bounded. Since the negative eigenvalues of
—A — ay(r; s) are isolated, p(s) stays away from 0 for all s € [0, 4], therefore,
there exists a positive constant C' such that wy(s) > C > 0 for all s € [0, d], and

our assertions follow. O

Using a similar reasoning, combined with Remark 7.2, one can prove the fol-

lowing result:
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Corollary 7.4. The coefficients of the polynomial ®4(€,1;5) are of order O(w;?)

as s — 0.

Recall that the first transformation of the Birkhoff normal form algorithm
eliminates all terms of degree 3 in (£,7). Let s > 0, and let x3 = x3(&,n; s) be the
unique solution of

{®2, x3} = —P3 (7.22)

(this is the analogue of (4.25) for the Hamiltonian ®). If 5 is the time-1 map
generated by s, (4.26) reads

1
CI) oVvg = (PQ —|— (1)4 —f- 5{@3, Xg} + h.O.t., (723)

where “h.o.t.” stands for terms of order O(|(£,7)]?).

We now consider the change of coordinates (4.27). Denote by ®3(c, 8) the
function ®2(&(av, B), n(a, B)), and similarly for &, &3, and others. These functions,
as well as w; and wsy, depend on s, but for simplicity we suppress the dependence
in the notation.

In the following lemma we study the Hamiltonian resulting from the first
step of the Birkhoff normal form algorithm. Recall that in the second step of
the computation all nonresonant terms (see the definition in the paragraph after
(4.29)) of degree 4 are eliminated, while resonant terms remain unchanged. We
are primarily interested in the asymptotic behavior (as s — 0) of the resonant

terms.
Lemma 7.5. For each s € (0, 4],

5

P =0 S

2
(/ az(x; 8)p3(x; S)dl’) 33 + @(a, B) +
RN
+ nonresonant terms+ h.o.t., (7.24)

where ® is a homogeneous polynomial in (av, B) of degree 4, with coefficients of
order O(w;7/2) as wy — 0 (that is, as s — 0), and “h.o.t.” stands for terms of
order O(|(c, B)]?).
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Proof. Let x3 be the unique solution of (7.22). If v3 is the time-1 map generated
by X3, then (7.23) holds, where the coefficients of ®, are of order O(wy?) as
wy — 0 by Corollary 7.4, and “h.o.t.” stands for terms of order O(|(£,1)|°) as
(&,m) = (0,0).
Our interest will be focused on the term (1/2){®3, x3} in (7.23). Using Lemma
7.3 and (7.21), we can write

D3(&,m) = 65(2,2,2)8 + Py =: D3 + P, (7.25)

where ®3(&,n) = ©03(2,2,2)&5, and 4 is a homogeneous polynomial in (&,7)
of degree 3, whose coefficients are of order O(w;') as ws — 0 by Lemma 7.3.

Equation (7.22) can be rewritten as
{®2,x3} = —P3 — 5.

We can find unique ys and x4, both homogeneous polynomials in (£,7) of degree
3, such that

{2, X3} = — s, (7.26)
{ @2, x5} = — 03, (7.27)
x3(&,m) = xs(&,m) + x5(6,1) (7.28)

is the unique solution of (7.22).

Recall that if J = (ji,j2) € N? is a multiindex, we write o/ = a'a?. When
the homological equation {®s, x3} = 1 is expressed in terms of the monomials
o’ BF, with

J, LeN? |J|+|L| =3, (7.29)
the operator {®,, - } has a diagonalizable matrix, which is similar to diag(iw - (L —
J))1s1+/0j=3- The transition matrix from the basis {/n" : |J]| 4+ |L| = 3} to the
basis {a/B% : |J| 4+ |L| = 3} is independent of wy, wsy, thus, inverting the matrix

of the linear operator {®,;-} introduces a singularity of order at most O(wy"').
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These remarks, together with (7.27), imply that the coefficients of the polynomial
X4 are of order O(w;?) as s — 0.
In the coordinates («, ) defined in (4.27),

Oy(av, B) = %(w —if)?
= D22 (03 302, — 3an2 + i) (7.30)

2v/2

We use (4.28) to find y3 —by dividing each term o’/BL in &3 by iw - (L — J),
with J = (ji1,J2), L = (¢1,02) as in (7.29). Note that none of the terms on the
right hand side of (7.30) involves ay or (i, so j; = ¢; = 0, and the condition
|J| + |L| = 3 becomes js + €5 = 3, hence, iw - (L — J) = iwz(la — j2). Thus,

o G)3(27 27 2)
2/ 2w

In particular, by Lemma 7.5, Y3 is a homogeneous polynomial in (a, 3) of degree

_ -1 . )
xs(o, B) (?Og + 3ic3 By — 333 + gﬂg) .

3 whose coefficients are of order O(w, 5/ %) as wy — 0.

Using the formulas for ®5 and ys, it follows that

OP30x3 O3 0P;

D5, v3) = —
{ > X3} 8042 852 8042 852
©5(2,2,2)? . ) )
= ?)(Twz) [(3a3 — Giaafly — 363)(3ia3 — 6z By +if33) —
(—a3 + Gic 32 — 333)(—3ic — 6aaf3s + 3if33)]
@3(27 2a 2)2

= 2070 (30 + 360 — 96 — (—3i — 36 + )]s s +

8wy

+ nonresonant terms

B 1503(2,2,2)?
25

2
( / aQ(m)gpg(x)dx) 333 + nonresonant terms,
RN

a§ 53 + nonresonant terms

15
~ 18wj
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where we have used (7.20) and the fact that the resonant terms are of the form

(4.31). Using (7.25) and (7.28),

({®s, X3} +{Ps, x5} + { P, x5} + {Ph, x5}) -

N | —

1
(P —
2{ 37X3}

From our previous observations, we can easily find the asymptotic behavior of
the last three terms on the right hand side: the coefficients of the polynomials
{®3, x4} and {®%, x3} are of order O(w; ) as wy — 0, while the coefficients of
{®%, x4} are of order O(w;?). Setting

all statements of the lemma are satisfied and the proof is complete. O

As in (6.6), define

GOI;5) := w(s) - I+ Po(I;s)

(7.31)
GYO,I;8) :=®(0,1;5) — G°(I;8) = ®.1(0,1;5),

where &, &, and ®; are as in Proposition 7.1. Using the conclusion of Lemma

7.5, in the next lemma we study the determinant of the matrix

9260 G0 .
W([; s) W([; s)

M(s)(I) = (7.32)
oG°

Lemma 7.6. Let M = (m;;), 1,7 = 1,2, be the matriz from (7.18), and let
M(s)(I) be the matriz in (7.32), defined for I € 2, where Q = Q, is as in (5.9),
with q > 0 sufficiently small. If § > 0 is sufficiently small, then

mi; Mz Wr
det M(s)(0) = |ma; oy wo| # 0

w1 wWa 0

for all s € (0,9).
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Proof. Note that the matrix M in (7.18) is determined by the first two steps of
the Birkhoff normal form algorithm, since the third and subsequent steps do not
alter terms of degree less or equal than 4 (in (£,7)). This is straightforward from
remarks after (4.22). If G° is as in (7.31), it is easy to see that
IGY 0?GY
or |, e T

et M,

where I = (I, I5) is as in statement (b) of Proposition 7.1. Note that

1 1
5[ . M[ = 5 (m11]12 + <m12 + mgl)[llz + m22122) .

Also, miy = mgy, and if (o, 5;), j € {1,2}, are as in (4.27), then
a;B; = i(& +2)/2 = il;.

The asymptotic behavior of the coefficient mys is obtained from Lemma 7.5. More
precisely, a term of the form «2/33 is present in (7.24) either in the second term
of the right hand side (and the coefficient is explicitly known) or in ®(a, 3), in
which case its coefficient is of order O(wy 7/ ?) by Lemma 7.5. Thus, mg, can be

written as )
Moy = _%w% (/RN as(w; 8) s (; s)dx) + Mg, (7.33)

where g, is of order O(w, " ?) as wy — 0. The integral in (7.33) depends con-
tinuously on s, thus, by hypothesis (A4), it is nonzero for all s € [0,d] if § > 0
is sufficiently small. Since the terms my; I and 2my5I;I5 are contained in ® in
/2
)

(7.24), Lemma 7.5 implies that my; and mj, are of order (’)(w;7 as wy — 0.

Expanding the determinant det M(s)(0) along the last row,

det M(5)(0) = wy(mgwa — Magwy) — wa(My1we — Majwi)

2 2
= —Moow] + wiwa (M1 + Ma1) — My1Ws.

Since mia = ma1, my1 and myo are (’)(w;7/2) as s — 0, and wy(s) > C > 0 for all
s € (0,9), using (7.33) we find

det M(s)(0) = —wimaz + Olwy %) = d(s)wy* + Ol ?),
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where 9(s) is a positive function such that, for some positive constant C' > 0,
¥(s) > C > 0 for all s > 0 sufficiently small. It follows that det M(s)(0) — oo
as s — 0, so det M(-)(0) # 0. Note that M(s) depends continuously on s
by Proposition 7.1(c) and Remark 2.3, thus, if § > 0 is sufficiently small, then
det M(s)(0) # 0 for all s € (0,0). O

Proof of Theorem 2.8. By Lemma 7.6, if 6 > 0 is sufficiently small, then for all
s* € (0,6) the matrix M(s*)(/) is nonsingular for all I € Q, as long as ¢ > 0 is
sufficiently small. It follows that the Hamiltonian G (6, I) = G°(I; s*)+G* (6, I; s*)
satisfies all the assumptions of Theorem 6.3 in the radial setting (in the sense of

Remark 6.4), which gives the desired conclusion. ]
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Appendix A

Hypotheses for the center

manifold theorem

In this appendix we complete the verification of hypotheses (H1) and (H3) from
Section 3.1 for the center manifold theorem.

Throughout this appendix we denote by ||+ ||, the usual norm of H*(R"), where
¢ > —1 is an integer, and || - ||z, the norm in W*P(R¥); in particular, || - ||o, is
the norm in LP(RY). For the sake of brevity, we will omit the domain R from
the spaces HY, W*P and LP.

A.1 Smoothness of the Nemytskii operator

In this section, we consider a function f : RY x R x R — R, where R? with
d € N is a parameter space (d = 0 is the case with no parameters). Under
suitable assumptions, we prove the ©*-smoothness of the corresponding Nemytskii
operator f acting on the space H® x R?. In Section 3.2, the results proved here are
applied withd =2, { =m+1, k = K+1, and f asin (2.2), (S2). Actually, for that
application it would be sufficient to consider f as a map defined on H™2(RY)
(with values in H™(RY)) and m > N/2, so our result here is slightly more

general than needed above.
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While there are many texts on continuity and smoothness of Nemytskii and
substitution operators in Sobolev spaces (see, for example, the monographs [5, 62,
68]), we were not able to locate the results in the form we need. For bounded
domains, the smoothness of Nemytskii operators in Sobolev spaces is treated in
detail in [68]. Tt is not difficult, although not completely trivial, to modify the
proofs in [68] so that they also apply to the Sobolev spaces on RY if suitable as-
sumptions on f are made. We give here a different proof based on the boundedness
of Nemytskii operators and the converse to Taylor’s theorem. Although we only
consider the spaces H', ¢ > N/2, we make no use of the Hilbert space structure
here. The same proof works for Nemytskii operators on W*P(RY), p € (1, 00), if
¢ > N/p.
We state the result in the following theorem, first, for operators without pa-
rameters, then with parameters. Given a function f € €**(RYN x R), the

Nemytskii operator f of f takes a function u on R to a function f (u) defined by

fu)(z) = f(z,u(x)) (zeRY). (A1)
We will only be dealing with functions v € H* with ¢ > N/2. In view of the
Sobolev imbedding theorem, we may assume that u is continuous on RY (more
precisely, it has a continuous representative, but we will not be making this dis-
tinction). Thus, f(u)(z) is defined for all z € RV,

When f depends on a parameter 7 € R, f = f(z, u; 7), we define its Nemytskii
operator f by

fuim)(@) = fla,u(@); 7). (A.2)
For j = 1,...,k, we denote by .Z7(H*, H) the space of all bounded symmetric

j-linear maps from H’ to itself; it is equipped with the standard operator norm.
Theorem A.1. Let { > N/2 and k > 0 be integers.

(a) Assume that f € €*THL(RY x R) and for each ¥ > 0 the function f is

bounded on RN x [—19, 1] together with all its partial derivatives up to order
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k+ 0+ 1. Assume further that f(-,0) € H' and for some constant C; > 0
one has

aﬁ—i—k—&—l]v(x’ y) B 5Z+k+1f(aj, 0)

Dl By Dt Oyk+1 < Gilyl

(zeRY ye(-1,1),i=1,...,N). (A.3)

Then the Nemytskii operator f takes H' to itself and, considered as an
operator on H, f is of class €*. Moreover, the k-th derivative of f, as a
map from H® to L¥(H®, HY), is Lipschitz on each bounded subset of H.

(b) Assume that f € €T 2(RY x R x RY), f(z,0;7) =0 for all x € RN and
7 € R?, and for each 9 > 0 the function f is bounded on RN x [—,9] x {T €
RY : |7| < 9} together with all its partial derivatives up to order k + € + 2.
Then the Nemytskii operator f : H® x R* — H’ is of class €*.

Remark A.2. (a) The assumption f € ¥RV x R) in statement (a) can
be relaxed a little. The continuity of the derivatives of f of order k + ¢+ 1 is
not needed; their existence and boundedness on the sets RY x [—, 9], ¥ > 0, is

sufficient.

(b) The mean value theorem implies that (A.3) holds if the regularity of f is
“one-degree” higher, that is, f € €*t*2(RY x R) and for each 9 > 0 the function
f is bounded on RY x [, 9] together with all its partial derivatives up to order
k + ¢+ 2. Such a higher regularity is assumed in statement (b) for the sake of

simplicity.

(¢) In the proof of statement (a), we also show that the derivative D7 f(u) is

given by the pointwise multiplication operator:

DV f(u)v,...,v](z) = Dif(x,u(x))(v(x))j (w,ve H, j=1,...,k), (A.4)

where o
D} f(z,y) = a—yjf(x,y)- (A.5)
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In the rest of this section, £ > N/2is fixed. By the Sobolev imbedding theorem,
H® — %,(RY), thus we view each element of H* as a continuous function.

We prepare the proof of the theorem by several preliminary results. First of

all, we note that in statement (a) we may assume, without loss of generality, that
f eI RY x R), (A.6)

that is, f and all its partial derivatives up to order k£ + ¢+ 1 are bounded globally
on RY x R (and not just on sets of the form RY x [—#,]). Indeed, smoothness is
a local property; thus, to prove statement (a) (including the boundedness of the
k-th derivative) we just need to consider the restrictions of f to bounded sets of
H*. Dealing with such restrictions, the values of f(x,y) for large |y| are irrelevant,
thanks to the imbedding H® — %;,(RY), thus we can modify f(x,y) for large |y|
so as to achieve (A.6).

We recall the following Banach algebra properties of H*. For the proof see
2, 68], for example.

Lemma A.3. The space H® is closed under pointwise multiplication and for any

integer 7 > 1 one has
HUl...”UngSCHUlug...H’Ung (U17~-7Uj GHE), (A?)

where C' = C(j, N,l) is a constant. Consequently, if a € Y, where Y = H® or
Y = 6LRYN), then for any integer j > 1 the map

LjZ(Ul,...,Uj)HO,’Ul...'Uj (AS)
belongs to LI (H*, HY) and

141

i, < Cllally, (A9)
for some constant C = C(j, N, ) (independent of a).

In the next two lemmas, we show a boundedness and Lipschitz continuity

property of Nemytskii operators under lower regularity assumptions.
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Lemma A.4. Assume that f € €{(RY x R), f(-,0) =0, and for some constant
C1 > 0 one has

0" .
wf(x,y)’ <Clyl (xeRY ye(-1,1),i=1,...,N). (A.10)

Then the Nemytskii operator f takes H* to itself and it is bounded: for each p > 0
there is a constant C(p) (depending on f and p) such that for all w € H* with

|lu|le < p one has

1F(w)lle < C(p).
Remark A.5. If the condition f(-,0) = 0 is dropped, then the lemma can be
applied to the function f(z,u) — f(x,0) if
P fay)  9f(@,0)

‘ 7
o o;

<Cilyl (@eRY ye(-1,1),i=1,...,N).

Proof of Lemma A.4. For f independent of x, the result is proved in [62, Section
5.24]. We just need minor modifications of the proof given there to yield the
present result.

As in [62], we use the fact that, due to the Fourier-multiplier characterization

of H*, the following expression gives an equivalent norm on H*:

N
lolly = llvlloz + >
=1

Thus, to prove the statement, we need to show that for each u € H¢ the L?-norms

oty
W

i ll0,2
of the functions
ae
flu(@), o (feu@), i=1,....N, (A.11)
are finite, and are bounded from above by a constant determined by p if ||ull, < p.
For f(z,u(z)), the estimate is simple. The bound |jul|, < p yields a bound
on |[uljg,.o- The assumptions f € €'(RY x R), f(-,0) = 0, imply that for any
y € R with |y| < ||ullose one has |f(z,y)| < Cly|, where C' = C(p) is constant.

Therefore

[f (@, u(z))] < Clu(z)]  (z € R),
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from which the desired estimate follows immediately.

Next, we estimate the derivatives in (A.11). As in [62], this is done by first
taking u € €°(RY) and then using the approximation properties of H¢. Fix any
i€ {l,...,N}. Using the chain rule, one shows by induction that

o* o*

i

+ Q(x), (A.12)

y=u(z)

where @ is the sum of finitely many terms of the form p(x)q(z), where

ots
p(x) = Wf(%y) | y=u(z) (A.13)
for some integers s > 1, j > 0 satisfying 7 + s < ¢, and
O"u(x) 0u(x) 0™ u(x)
= o A.14
1) = "5 o’ (A.14)
for some positive integers rq, ..., ry satisfying j +r +---+r, = £. In the proof of

Theorem 1 in [62, Section 5.2.4], the L2-norms of the products of the form (A.14)
are estimated in terms of a finite number of powers of ||u||y; in particular, the
L?-norms are bounded by a constant determined by p if ||ull, < p. Obviously,
the same can then be said of the L?*norms of the products p(z)q(z), since the
function p(z) given by (A.13) is bounded.

It remains to estimate the first term on the right-hand side of (A.12). For that
we use (A.10). Each (continuous) function u € H* with ||ull < p has its range
contained in (—cp,cp) (c is a constant from the Sobolev imbedding). Clearly,
(A.10) continues to hold if we take the interval (—cp,cp) in place of (—1,1),
possibly after replacing the constant C by a larger constant C(p). Consequently,
for u € H® with ||ull; < p the L?>-norm of the function

¢
(%Zef (,9) |

y=u(z)

is not greater than Cy(p)||ullo2 < Ci(p)p. This, in conjunction with the previous

estimates, completes the proof. O
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Lemma A.6. Assume that f € 6.7 (RN x R) and for some constant Cy > 0 one
has

P flwy) 0 (,0)

<C eRY ye(-1,1),i=1,...,N).

(A.15)

Then for each p > 0 and any two functions u,v € H® with ||[ully, ||v]|, < p, one
has f(u) — f(v) € H' and

1 (u) = F)lle < Calp)llu—v]le, (A.16)

where Cy(p) is a constant determined by p (and independent of u and v).

Proof. Fix u,v € H* with ||u|, ||v]le < p. For each x € R,

(F(w)— F(o)) (@) = ( [ Dut (ot + ttute) — o) dt) (u(@) —v(a)). (A1T)

Write the integral in (A.17) as follows:

/0 (Dyf(x, u(z) + t(u(z) — v(x))) — Dy f(z,0))dt + D, f(z,0). (A.18)

We now apply Lemma A.4 to the function f,(x,y) — f,(z,0), which is legitimate
by (A.15) (cp. Remark A.5). Thereby we obtain that for each ¢t € [0,1] the
function f,(z,u(x) + t(u(x) — v(x))) belongs to H* and its Hnorm is bounded
by a constant C' = C(p). From this it follows that the integral in (A.18) is also
a function in H* with norm bounded by C(p). Since f,(z,0) is a function in %,
we conclude, using (A.17) and the second statement of Lemma A.3 with j = 1,
that f(u) — f(v) € H® and its norm is estimated as in (A.16). O

We are in a position to prove Theorem A.1.

Proof of statement (a) of Theorem A.1. As noted above, we may assume without
loss of generality that (A.6) holds.

Given u € H, we have f(u) = f(u)— f(0)+f(0). Since the function f(0)(z) =
f(z,0) belongs to H® by assumption, Lemma A.6 (with v = 0) implies that
f(u) € H'. Thus f takes H' into itself.
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Next, given any two functions u,v € H, Taylor’s theorem gives, for each

x € RY, the following expansion

(f(u+v) = flu))(z) = Z %Dif(l% u(@))((@)) + Rz, u(@), v(x))(v(2))",

(A.19)
where D] f(x,y) is as in (A.5) and
R(z,y,z) = /o %(D];f(x, y+tz)— D];f(x, y)) dt. (A.20)

According to the converse to Taylor’s theorem [1, 36|, the map f is of class €*,
with the derivatives as in (A.4), provided the following holds. The symmetric
multilinear operators L;(u), j =1,...,k, and L(u,v) defined by

Li(u)[vy,...,v5](z) Dgf(x,u@))vl(a:) (@) (vr,..v € HY, (A21)
L(u,v)[vr, ..., v)(2) = Rz, u(z),v(@))vi(z) ... op(x)  (v1,... 0, € HY),

(A.22)

are bounded, the maps
ws Li(u) : H* — ZI(H', HY), (A.23)
(u,v) — L(u,v) : H* x H" — £J(H*, H") (A.24)

are continuous, and L(u,0) = 0. The last property is obvious. Consider now
the operator L;(u), for any j € {1,...,k}. Observe that Lemma A.6 applies to
the function D} f. Indeed, condition (A.15) (with f replaced by D} f) holds for
j <k dueto Dif € €. and for j = k due to assumption (A.3). Let 1/)5? be
the Nemytskii operator of D] f. From Lemma A.6, we obtain, first of all, that for
each u € HY, - -
Djf(u) — Dyf(0) € H".
Writing - - - -
Dy f(u) = Dy (u) = Dyf(0) + D; f(0)
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and noting that D f (0) is the €-function D} f(x,0), we obtain from Lemma A.3
that the j-linear map L;(u) is bounded. Moreover, using (A.9) and Lemma A.6,
we infer that for arbitrary p > 0 and u,u € H® with |Jull,, ||@]|, < p one has

1L (u) = L;(a)

where C(p) is a constant independent of u, u. This gives the continuity—even

v ey < Cp)|Ju —alle, (A.25)

Lipschitz continuity on bounded sets—of u — L;(u).

The boundedness of L(u,v) and its Lipschitz continuity on bounded subsets
of H* x H* are proved by similar arguments (cp. the proof of Lemma A.6) and we
omit the details.

The proof of statement (a) is now complete. O

Proof of statement (b) of Theorem A.1. The hypotheses of statement (b) guar-
antee (cp. Remark A.2), that statement (a) applies to f(-,-;7) for each 7. This
implies in particular that f takes H x R to H’.

As in statement (a) (cp. (A.6)), we may assume without loss of generality that
f e G RY x R x RY). (A.26)

To prove that f : H! x R* — H’ is of class €%, we use the converse to Taylor’s
theorem again. Given any w,v € HY, 7,¢ € R?, we first write down the multivari-
able Taylor expansion at each x € RY. Taking 7 = (71,...,7a), ¢ = (S1,---,%4),

and using the standard multiindex notation, we have

(flutoir+¢) — Z > —DﬁD]( u(@);7)(v(2))'¢”

131
Jj=0  peNd ;!
1<5+IBI<k

+Z > Rjs(m,u(x),v(z);7¢)(v(x))s?, (A.27)
= e

where, for 5 = (5,..., B4),
HI+18l

DBDI f(x,y;7) =
D) = ey

[z, y;7), (A.28)
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and

1 k—1
Rjp(x,y,27,) = j!lﬁ! /0 (1]{—_&1)! (DED) f(x,y+tz; T+t)—DLD) f(x,y; 7)) dt.
(A.29)
As in the proof of statement (a), the functional coefficients in this expansion
define symmetric multilinear maps (by pointwise multiplication). We need to
prove that these multilinear maps are bounded on H¢ x R? and depend contin-
uously in the multilinear-operator norm on (u,7) € H® x R? or, in the case
of Rjg, on (u,v,7,5) € H* x H* x R? x R? (the additional needed relations
R; 5(z,u(z),0;7,0) = 0 are trivial). The boundedness is proved as in (a) (since
7 is in a finite dimensional space, we only need to worry about the boundedness
in u € H*). Also as in (a), the proof of the continuity amounts to proving the
continuous dependence of the Nemytskii operators, viewed as maps from H* x R?

to HY, of the functions
i NHB . i DB . s d ;
DD f(x,y;7)=Dy DL f(2,0;7)  (j=0,....k BN, 1< j+[8] <k). (A.30)

We claim that these Nemytskii operators are Lipschitz on each bounded subset of
H® x R?. Indeed, each of the functions (A.30) is at least of class %;."2. Therefore,
as in (a), its Nemytskii operator is Lipschitz in u, uniformly for (u,7) in any given
bounded subset of H¢ x R?. The uniform Lipschitz continuity in 7 follows from

(A.26). Similar considerations show the continuity of the operators defined by
R; 5. O

A.2 Bound on the resolvent

This section is devoted to the proof of the resolvent bound stated in hypothesis
(H3) in Section 3.1. We essentially use a proof found in [70], modifying and
extending it slightly to account for the differences in our setting.

Recall that in Chapter 3 we defined the operator A; = —A — a;(x) on H™,

with domain D(4;) = H™2. Here we assume, as in (S2), a; € 6", and the
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integer m satisfies m > N/2 (it actually suffices here to assume a; € €."). Recall
also that A is the operator on H™*! x H™ with domain D(A) = H™™ x H™*!,
given by

Aluy, up) = (ug, Ajuy)™. (A.31)

Below, we suppress the argument x from a; for the sake of clarity.

Proposition A.7. Assume that a; € 6", where m > N/2 is an integer, and
A be defined as above. Then there exist &y > 0 and a constant C, depending only

onm, N, and ||a1]|m,co, Such that for all & € R satisfying |w| > @y one has

C

@l

(i — A) " zmmssmmy < (A.32)

The proof of Proposition A.7 goes along similar lines as an example in [70],
where a domain with a bounded cross-section is considered. We will use estimates

of solutions of the equation
—Au — ayu+ U =v, (A.33)

where 7 € R. By standard results, if |[7| > /1 + ||a1]|o,, then for each v € L?
this equation has a unique solution u € H%. Moreover, if v € H?, j € {m —1,m},
then v € HIT2,

Lemma A.8. Under the assumptions of Proposition A.7, there exist constants
By N and Cy, v, depending only on m and N, such that if |7| > /1 + a;, where

a1 = Cpnl|a1]|m,c0, then the following statements hold:

(a) If v e H™ and u € H™*? is the solution of (A.33), then
(7% = a)llullm < Buwllv]lm, (A.34)

and
(72 = a1 = Y21 < B0 (A.35)
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(b) Ifve H™ ' and uw € H™ is the solution of (A.33), then

ullmi1r < B nl[v][m-1, (A.36)

and
(7* = o1 = D)2 ||ullm < Bun|[0flm-1. (A.37)

Proof. Recall that for J = (j1,...,j,) € N”

ol
DJ

ot oal
For |J| < m, applying D’ to (A.33), we obtain
~A(D’u) — D’(ayu) + 7*D’u = D”v. (A.38)

Multiplying (A.38) by D”u, integrating by parts, and applying the Holder in-

equality, we obtain
/N VD u? d:H—TQHD‘]uH(QL2 < ||DJU||072||DJU||072—|-/N DY (ayu)D7u dx. (A.39)
R R

Computing the derivative of a;u using the Leibniz rule, one finds a constant C’,
depending only on m and N, such that
D’ (a1u)D7u dv < C'|ay|m ool
RN

Substituting in (A.39), we obtain
/RN VD uf? dz + 72| D7 ullg oy < [[vllmllullm + C”llar msollull7,. (A.40)

Dropping the first term of (A.40), and adding over all multiindices J satisfying
|J| < m, we obtain

T U S D, NU|V]|m || W||m + a1 ||m,oo||U||m ) -

2 2 < B Cl 2

Setting Cy, n = B nC', a1 = By vC'||a1 || .00, We have

(7% = an)Jully, < B wllvllml[ullm,
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that is, (A.34) holds.

Equation (A.40) can also be rewritten as
ID7ull} + (7% = DID ullg, < [vllmllullm + C”llar lmsollull, (A.41)

Since

Z D7 ull} > Z ||DJU||3,2 = [l 7

JeENN JENN
|J|<m |J|<m+1

adding over all multiindices J satisfying |J| < m in (A.41), we obtain

[ullrsr + (7% = 1= a)Jully, < B yllvlmltl]n.

Since the left hand side dominates (72 — 1 — ay)Y? |||yt ||t|lm, (A.35) follows.

To prove statement (b), we return to (A.38) again. Similar computations as
above, but with an extra integration by parts (to move a derivative from v to u),
yield

[ullfgs + (7% = a1 = Dullf, < Banlvllm—1llullmr. (A.42)

Strictly speaking, in the above computations we assumed that v € H™ and u €
H™* 2 but it can be verified easily that the result remains valid if v € H™~!, taking
into account that in the worst case one may have D’v € H~! (alternatively, one
can prove the final estimate by approximating v in H™~! by functions in H™).
Since 72—a;—1 > 0, we can drop the second term of the left hand side of (A.42)
to get (A.36). The left hand side of (A.42) dominates (72— oy — 1)"2 ||| 12|,
from which we obtain (A.37). O

Proof of Proposition A.7. In this proof, C;, Cs, Cs, C4, and Cy are constants
depending only on m, N, and ||a1 | m,c-

Recall that the operator A has 2n (purely) imaginary eigenvalues +iwy, ...,
+iw,, with w; > 0. Set wy = max;jw;. Let A = iw, where & € R satisfies

W] > wyr + 1 and @? > oy + 1, with a3 = Cp n||@1]lm.c0, as in Lemma A.8. For
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u = (ug,us) and v = (vq,v3), consider the equation Au = Au+ v, or, equivalently,

U9 = )\Ul + U1

—Aul — AU = )\Ug + vo.
Eliminating us from (A.43), we get
—Au1 — )\2U1 — a1uU; = )\Ul + V2,

or,

—Aul + (2}2U1 — aituy = /\Ul =+ vs.

If v; =0 and vy € H™, applying Lemma A.8(a) to (A.44) gives

el < 22 o,
Bm N
futlloes < =2zl < el
Since uy = 1Wuq,
w
el < 222 gl < el

Now take vy = 0, v; € H™". Eliminating u; from (A.43), we get

—Auy + &y — agus = —Avy — ajvy.
From Lemma A.8(b), we deduce
|u2|lms1 < Bmnl|Avt + a101|lm—1 < Cs|v1][ma1,

and

(@ = ar — DY?||ug|lm < Bon || Av1 + a101 -1 < Cs||v1[lms1-

Relations (A.48) imply
Cs C

< 3 )
1)1/2||U1||m+1 = |@| ||U1Hm+17

<
sl < g =

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)
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while, using u; = (ug — v1)/(iw), relations (A.47) yield

C
[urllmsr < 0]l (A.50)

@l
Combining (A.46), (A.49); (A.45), (A.50); and the fact that (io — A)~! is a
linear operator, we conclude that (A.32) holds for all @ € R satistying |&] > @y,

where wy € R satisfies Wy > max{v/ay + 1,wy + 1}. O

Remark A.9. In the parameter-dependent case it is possible to prove the ex-
istence of a constant C' such that (A.32) holds uniformly for s € [0,6]. Indeed,
suppose that instead of the operator A; = —A — a;(z) we consider the family of
operators A;(s) = —A —ay(x; s), where the map s € [0,6] — a;(-; s) is continuous
in the €™(RY)-norm, and § > 0. In this setting the operator A, defined in (A.31)
depends on s via A;. If @ is sufficiently large, in particular, such that the set
{iX 1 |A| > @o} does not intersect the spectrum of A(s) for any s € [0,6], then C
can be chosen sufficiently large so that (A.32) holds for all s € [0, d]. This fact is

a direct consequence of C' depending only on m, N, and ||a; ||,



