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Abstract

We consider elliptic equations on RN+1 of the form

∆xu+ uyy + g(x, u) = 0, (x, y) ∈ RN × R, (1)

where g(x, u) is a sufficiently regular function with g(·, 0) ≡ 0. We give sufficient

conditions for the existence of solutions of (1) which are quasiperiodic in y and

decaying as |x| → ∞ uniformly in y. Such solutions are found using a center

manifold reduction and results from the KAM theory. We discuss several classes

of nonlinearities g to which our results apply.
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Chapter 1

Introduction

In this dissertation, we consider elliptic equations of the form

∆u+ uyy + g(x, u) = 0, (x, y) ∈ RN × R, (1.1)

where (x, y) ∈ RN × R, ∆ is the Laplacian in x, and g : RN × R → R is a

sufficiently smooth function satisfying g(·, 0) ≡ 0. We investigate solutions of

(1.1) which decay to 0 as |x| → ∞, uniformly in y. Our concern is the behavior

of such solutions in the remaining variable y; specifically, we are interested in the

existence of solutions which are quasiperiodic in y. The purpose of this dissertation

is twofold. First, we build a general framework for studying solutions of (1.1)

using tools from dynamical systems, such as the center manifold theorem and the

Kolmogorov-Arnold-Moser (KAM) theory. Then we show how these techniques

yield quasiperiodic solutions in some specific classes of equations.

Geometric properties of solutions of (1.1) have been extensively studied by

many authors. Best understood are positive solutions which decay to 0 in all

variables. If g satisfies suitable assumptions, involving in particular symmetry and

monotonicity conditions with respect to x, then a classical result of [31] establishes

reflectional symmetry of such solutions, or even the radial symmetry about some

origin in RN+1 if g is independent of x (see also [11, 12, 13, 26, 44, 45] or the

surveys [10, 52, 56] for related symmetry results and additional references). It is
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2

very likely, and has already been proved in some situations, that, under similar

hypotheses on g, bounded positive solutions which decay as |x| → ∞ uniformly in

y, but do not necessarily decay in y, enjoy the symmetry in x (see [34] for results

of this form). Several authors have also exposed complexities of various solutions

which do not decay at infinity. Examples, with g = g(u), include multi-bump

solutions decaying along all but finitely many rays [46], saddle shaped solutions

and general multiple-end solutions [23, 24, 41], as well as solutions having both

fronts (transitions) and bumps [63].

Solutions of the form considered in the present dissertation (that is, solutions

decaying in x uniformly in y) were examined by Dancer in [19]. Considering

homogeneous nonlinearities g = g(u) of a certain type, with special focus on

the nonlinearities g(u) = up − u with a subcritical p, he proved the existence of

solutions periodic (and nonconstant) in y. With the existence of periodic solutions

established, one wonders if solutions with more complicated behavior in y may

occur. The existence of quasiperiodic solutions then becomes one of the most

immediate compelling problems. Looking for tools to address this problem, one

thinks of the KAM theory quite naturally.

Since its inception [6, 40, 50], the KAM theory has been employed by many

authors in proving the existence of invariant tori filled with quasiperiodic solu-

tions for finite dimensional Hamiltonian systems (see, for example, [16, 20] for an

overview of results and techniques, or [25] for a more detailed historical account

and references). Extensions of the classical KAM results to infinite dimensional

Hamiltonian systems generated by partial differential equations (PDEs) have been

made by several authors (see, for example, [8, 15, 18, 30, 42, 43, 71] and references

therein). In a recent paper [22], de la Llave and Sire took an a posteriori (cp. [29])

approach to applying KAM techniques in PDEs. This approach consists in find-

ing approximate quasiperiodic solutions, and then proving the existence of true

quasiperiodic solutions nearby. The procedure does not rely on the well-posedness

of the initial value problem for the equation in question and is therefore applicable

to some ill-posed equations (this is illustrated by the Boussinesq equation in [22]).
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Potentially, their approach could give a way to deal with problems similar to ours

if the nonlinearity is analytic. We take a different route, however. We examine

(1.1) by its “spatial dynamics,” formally viewing it as an evolution equation with

the variable “y” taking the role of time. Invoking a center manifold theorem, we

find a finite-dimensional Hamiltonian system to which classical KAM results can

be applied.

Spatial dynamics, as a technique to study elliptic equations with an unbounded

variable, was first used by Kirchgässner [39] and developed by Mielke [47, 48, 49]

and others (see, for example, [17, 28, 33, 35, 53, 54, 70]). The main idea underlying

this technique is that although the equation has an ill-posed initial value problem,

a large class of its solutions is often described by a finite dimensional reduction

– an ordinary differential equation with a well defined flow, which can be studied

using tools from dynamical systems.

An application of KAM theorems via spatial dynamics has also appeared in

the literature: in [69], Valls proves the existence of quasiperiodic solutions of

semilinear elliptic equations on a strip. Applying a center manifold reduction and

taking the Birkhoff normal form of the Hamiltonian of the reduced equation to

a sufficiently large order, she writes the reduced equation as the sum of an inte-

grable system and a (locally) small perturbation. This puts the problem in the

form suitable for the KAM theory, although, because of the lack of analyticity

of the center manifold reduction, KAM results for systems with finite degree of

smoothness have to be used. Semilinear elliptic equations on a strip were also

considered in an earlier work of Scheurle [65]. Similarly as in his paper [64] on

analytic reversible ODEs, he designs a Newton iteration scheme to find families

of quasiperiodic solutions bifurcating from an equilibrium. It is noteworthy that

resolvent estimates typically used in the center manifold reduction are involved in

[65], although the center manifold theorem is not invoked there. Working in the

analytic setting (and not losing it in a center manifold reduction), while restric-

tive, has the advantage of leading to a finer description of the solutions, such as

the analyticity of the solution branches. We also mention related results based on
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a variational approach to elliptic equations. In an extension of the Aubry-Mather

theory to PDEs, as developed by Moser [51] and Bangert [9] (see also [27, 59, 67]

and references therein), one considers integer-periodic elliptic equations (such as

equation (1.1), where g is 1-periodic in the variables x1, . . . , xN , and u) as Euler-

Lagrange equations of an associated functional and shows the existence of local

minimizers whose graphs are within a bounded distance from a given hyperplane

and obey a certain “no self-intersection” property. The behavior of such solutions

depends on the orthogonal vector to the hyperplane, or the “rotation vector.” For

rationally independent rotation vectors one obtains solutions with a quasiperiod-

icity property relative to the integer translation. Note, however, that this class of

solutions is quite different from those studied in [65, 69] or in this dissertation; in

particular, they are all unbounded.

On a general level, our approach to constructing quasiperiodic solutions is sim-

ilar to that of [69]. However, applying these techniques to (1.1) poses significant

difficulties. The first one is that in our case the “cross-section” of the domain

RN × R is RN . Thus, the Schrödinger operator appearing in the evolution for-

mulation of (1.1), namely, the operator −∆ − a1(x) with a1(x) = gu(x, 0), has

a nonempty essential spectrum. For the center manifold reduction to apply, we

need the essential spectrum to be away from and to the right of the origin on the

real axis. On the other hand, the KAM theory calls for some eigenvalues of an

underlying matrix operator to lie on the imaginary axis, and this in turn requires

the Schrödinger operator to have a number of negative eigenvalues. Whether such

eigenvalues exist, simultaneously with the essential spectrum contained in the pos-

itive half-line, depends on the specific problem and it takes some work to verify

that they do for some equations of a given structure. The unboundedness of the

cross-section complicates matters in other ways as well. One is the lack of the

Fourier eigenfunction expansion, which is often useful for explicit computations

when the cross-section is an interval or a rectangle (cp. [29, 69, 71]).

There is also a difficulty coming from the nonlinearity itself, since we allow the

expansion of the function g at u = 0 to involve a nontrivial quadratic term. If the
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quadratic nonlinear term is absent, the analysis becomes simpler when it comes

to the verification of certain nondegeneracy conditions needed in the KAM-type

results [69, 71]. For example, in the approach of [69], when the nonlinearity is

odd—in particular, the quadratic terms are absent—neither the reduction func-

tion (from the center manifold theorem) nor the change of coordinates from the

Darboux theorem (to bring the symplectic structure to the standard one) enter

the expansion of the reduced Hamiltonian up to order four. Since the Kolmogorov

nondegeneracy condition involves terms of order at most four, verifying it amounts

to an explicit computation. Including quadratic terms in the nonlinearity compli-

cates matters, but it is necessary for some applications of our results to problems

with a specific structure (for more on this, see Remark 2.2(v) below). On the

other hand, in some situations, which we explore, the presence of a quadratic

term satisfying some conditions can be used for verifying the Arnold nondegener-

acy condition, which also yields the existence of quasiperiodic solutions.

Our main theorems give sufficient conditions for the existence of solutions of

(1.1) which are quasiperiodic in y with n frequencies, where n > 1 is a given

integer. As usual in KAM-type results, for equations satisfying the sufficient con-

ditions, one automatically gets uncountably many quasiperiodic solutions whose

frequency vectors form a set of positive measure in Rn. As indicated above, we

are mainly interested in y-quasiperiodic solutions which decay to zero as |x| → ∞,

but our general results are flexible enough to deal with other types of solutions,

such as solutions which decay in some of the x-variables and are periodic in the

others (see Remark 2.2(iv) below). Our sufficient conditions are formulated ex-

plicitly in terms of eigenvalues and eigenfunctions of the operator −∆−a1(x) and

the third derivative a3(x) := guuu(x, 0) of the nonlinearity. In the case n = 2,

we also formulate a condition involving the second derivative a2(x) := guu(x, 0).

It is not difficult to show that the conditions are robust: if they hold for some

a1, a3 (or a2), then they continue to hold if a1, a3 (or a2) are perturbed slightly.

However, proving that they hold for some a1, a2, a3 is not always so easy and may

become increasingly difficult when one starts imposing structural assumptions on
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equation (1.1). Naturally, the more restrictive the structure, the less freedom one

has to choose the functions so that the given conditions are satisfied. We verify

that the conditions do hold for some radially symmetric a1, a3 (and all small,

possibly nonradial, perturbations thereof).

The remainder of this dissertation is organized as follows. Our main results

and an informal overview of the proofs are given in Chapter 2. We also show there

examples of functions satisfying our hypotheses. In Chapter 3, we apply a center

manifold reduction to an abstract form of (1.1). In Chapters 4 and 5, we employ

the Hamiltonian structure of the reduced equation: using a Birkhoff normal form

procedure, we write the Hamiltonian in a form suitable for the KAM theory.

This yields, under certain hypotheses, quasiperiodic solutions and completes the

proofs of two of our main theorems. Chapter 6 is devoted to using a different

nondegeneracy condition to apply the KAM theory and derive the existence of

quasiperiodic solutions, allowing us to prove the last of our theorems in Chapter

7. In Appendix A, we verify some of the technical hypotheses needed for the

center manifold theorem, including the smoothness of Nemytskii operators acting

on Sobolev spaces on RN .

Remark. This version of the dissertation is slightly modified from the original

submitted to the University of Minnesota to address some minor issues in Chapter

7, namely, the construction of the center manifold reduction needs to be modified

to take into account the fact that the linear part of the abstract equation depends

on the parameter. The author is grateful to Professor Peter Poláčik for his help

in finding and addressing these issues.



Chapter 2

Main results

In this chapter, we introduce some terminology and give precise statements of our

main results. We also verify our hypotheses for some equations of the form (1.1)

and outline the proofs of the main theorems.

Throughout this dissertation, Cb(RN) is the space of continuous bounded (real

valued) functions on RN and C k
b (RN) for the space of functions on RN with

continuous bounded derivatives up to order k, k ∈ N := {0, 1, 2, . . . }. When

needed, we assume that these spaces are equipped with the usual norms. The space

Crad(RN) (resp. C k
rad(RN)) is the subspace of Cb(RN) (resp. C k

b (RN)) consisting of

radially symmetric functions around 0. In a slight abuse of notation, a function

g ∈ Crad(RN) will be seen either as a function g(x) of x ∈ RN or as a function g(r)

of r ≥ 0. We also denote by Lprad(RN) and Hk
rad(RN) the subspaces of Lp(RN) and

Hk(RN), respectively, consisting of radially symmetric functions about 0. In the

sequel, every radially symmetric function is assumed to be symmetric around 0.

Fix a positive integer N . The main equation we consider is

∆u+ uyy + a1(x)u+ f(x, u; s, b) = 0 for (x, y) ∈ RN × R = RN+1, (2.1)

where a1 ∈ Cb(RN), b 6= 0 and s ∈ R are real parameters, and f is a sufficiently

regular function on RN×R×R2. We will formulate regularity and other hypotheses

7
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on a1 and f shortly. Structurally, we will assume f to have the form

f(x, u; s, b) = b
(
sa2(x)u2 + a3(x)u3

)
+ u4f1(x, u; s, b), (2.2)

where a2, a3 ∈ Cb(RN) and f1 : RN+1×R2 → R are sufficiently smooth functions.

For our last result, we consider the equation

∆u+ uyy + a1(r; s)u+ a2(r; s)u2 + u3g(r, u; s) r ≥ 0, y ∈ R, (2.3)

where s ≈ 0 is a parameter, g is a sufficiently regular function on RN × R,

radially symmetric in the first argument, and we will formulate regularity and

other hypotheses on a1, a2 and g in the next section.

Remark. Notice that, unlike equation (2.1), the cubic term can be missing in (2.3),

in particular, one can take g ≡ 0.

2.1 Hypotheses

Given integers n ≥ 2, k ≥ 1, a vector ω = (ω1, . . . , ωn) ∈ Rn is said to be

nonresonant up to order k if

ω · α 6= 0 for all α ∈ Zn \ {0} such that |α| ≤ k. (2.4)

(Here |α| = |α1|+ · · ·+ |αn|, and ω ·α is the usual dot product.) If (2.4) holds for

all k = 1, 2, . . . , we say that ω is nonresonant, or, equivalently, that the numbers

ω1, . . . , ωn are rationally independent. A special class of nonresonant vectors which

will play a role later on is the class of Diophantine vectors, see Chapter 5.

Assuming a1 ∈ Cb(RN), consider the Schrödinger operator A1 = −∆− a1(x),

viewed as an unbounded self-adjoint operator on L2(RN) with domain D(A1) =

H2(RN). Fixing an integer n ≥ 2, we make the following assumptions on a1:

(A1)(a) L := lim sup
|x|→∞

a1(x) < 0.

(A1)(b) A1 has exactly n negative eigenvalues µ1 < · · · < µn, all of which are

simple, and 0 is not an eigenvalue of A1.
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Sometimes, we collectively refer to assumptions (A1)(a) and (A1)(b) as (A1).

Remark 2.1. If one is specifically interested in problems with radial symmetry;

that is, when the functions a1, f , and the sought-after solutions are required to be

radially symmetric in x, then one can adapt this hypothesis to the new situation:

rather than considering the Schrödinger operator A1 = −∆− a1 on the full space

L2(RN), one can take its restriction to the subspace L2
rad(RN) (the domain of A1

is then H2
rad(RN)). This implies that the eigenvalues are automatically simple,

which is not guaranteed when A1 is considered in the full space.

In our next hypotheses, K and m are integers satisfying

K ≥ 6(n+ 1), m >
N

2
. (2.5)

We assume the following smoothness and nonresonance conditions on a1:

(S1) a1 ∈ Cm+1
b (RN).

(NR) Denoting ωj :=
√
|µj|, j = 1, . . . , n, the vector ω = (ω1, . . . , ωn) is nonres-

onant up to order K.

Our smoothness requirement on the functions in (2.2) are as follows:

(S2) a2, a3 ∈ Cm+1
b (RN); f1 ∈ CK+m+4(RN ×R×R2) and for all ϑ > 0, ρ0 > 0,

the function f1 is bounded on RN × [−ϑ, ϑ]× [−ρ0, ρ0]2 together with all its

partial derivatives up to order K +m+ 4.

Hypotheses (A1), (NR), (S1), (S2) are our standing hypotheses throughout

Chapters 3 to 6. In addition, we will assume one of the following two hypotheses.

The first one, (A2), involves the function a3 from (2.2) and eigenfunctions of A1;

thus, in effect, it is a hypothesis on f and a1. The other hypothesis, (A3), concerns

a1 only.

Let ϕ1, . . . , ϕn be eigenfunctions of A1 corresponding to the eigenvalues µ1,

. . . , µn, respectively, normalized in the L2-norm (they are determined uniquely

up to signs).
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(A2) The n× n matrix M1 with entries

(M1)ij = (2− δij)
∫
RN
a3(x)ϕ2

i (x)ϕ2
j(x) dx (i, j = 1, . . . , n),

where δij is the Kronecker delta, is nonsingular.

(A3) The eigenfunctions ϕ1, . . . , ϕn have the following quartic independence prop-

erty: the set of functions {ϕ2
iϕ

2
j : 1 ≤ i ≤ j ≤ n} is linearly independent

in some nonempty open subset U ⊂ RN , that is, the coefficients of any

linear combination of these functions which vanishes identically in U are

necessarily equal to 0.

We make some comments on the hypotheses made here.

Remark 2.2. (i) The sole role of hypothesis (A1)(a) is to guarantee that the

essential spectrum σess(A1) of the operator A1 is contained in (−L,∞) [60]. The

condition σess(A1) ⊂ (−L,∞), or any explicit condition which implies this in-

clusion, can safely be used as a hypothesis in place of (A1)(a). Note that, since

σ(A1)\σess(A1) consists of isolated eigenvalues, conditions (A1)(a), (A1)(b) imply

in particular that there is γ > 0 such that σ(A1) ∩ (−γ, γ) = ∅. Also, it is well

known that, as eigenfunctions corresponding to isolated simple eigenvalues, the

functions ϕj(x) have exponential decay as |x| → ∞ [3, 4, 58]. In particular, the

integrals in (A2) exist.

(ii) The regularity of f is needed mainly for two reasons. An application of

the KAM theory forces us to a assume a sufficiently high smoothness of f(x, u)

with respect to u. The smoothness of a1 and f with respect to x has more to

do with our choice to set up a formulation of (2.1) in the spaces Hm(RN) with a

large enough m, rather than in the spaces W 2,p(RN) with a sufficiently large p.

Working in a Hilbert space setting simplifies some considerations, at the expense

of the regularity requirements.

(iii) In our main results, Theorems 2.4 and 2.6 below, the smoothness of the

function f1 with respect to the parameters s, b is not relevant, only what happens
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at the quadratic and cubic terms of f is important (see Remark 4.12 for an expla-

nation of this). However, in other theorems, such as the reduction to the center

manifold and the Darboux change of coordinates, it is of interest to know how

the smoothness of f with respect to the parameters reflects in the conclusions of

those theorems.

(iv) The formulation of our hypotheses reflects our main objective to find y-

quasiperiodic solutions which decay to zero as |x| → ∞. To search for other types

of y-quasiperiodic solutions, one would need to modify the hypotheses suitably.

Suppose, for example, that a1(x) and f(x, u) are even and periodic in xN with

period 2p > 0, and one wants to find y-quasiperiodic solutions which decay in

x′ = (x1, . . . , xN−1) and are even and 2p-periodic in xN . The operator −∆ −
a1 is then to be considered as a self-adjoint operator, with natural domain, on

the space of functions on RN which are even and 2p-periodic in xN and whose

restrictions to RN−1 × (−p, p) are in L2(RN−1 × (−p, p)). Hypothesis (A1)(a)

has to be replaced by the condition σess(A1) ⊂ (−L,∞) (or an explicit sufficient

condition), and the integrals in (A2) are taken over RN−1 × (−p, p), rather than

over RN . The remaining hypotheses can be kept intact. The evenness requirement

can be dropped in this example, although in some specific situations the simplicity

of the eigenvalues, as required in (A1)(b), may not be satisfied without it.

(v) Note that if (A1) is to be satisfied, a1 cannot be a constant function. This

is consequential for applications of our results to some specific equations, such

as spatially homogeneous equations (1.1). Indeed, if g = g(u) in (1.1) or, more

generally, if the derivative gu(x, 0) is constant, then in (2.1), (2.2) one cannot

simply take the coefficients aj from the Taylor expansion of g at the trivial solution.

Instead, the Taylor expansion has to be taken at a nontrivial solution ϕ = ϕ(x).

Such an expansion will typically involve quadratic terms in u, regardless of any

assumptions on the derivatives of g at 0. Mainly for this reason we insist on

including the quadratic term in (2.2).

When dealing with equation (2.3), we will modify our hypotheses slightly. For
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δ > 0 sufficiently small and s ∈ [0, δ], we now consider the Schrödinger operator

A1(s) := −∆ − a1(r; s) acting on L2
rad(RN) with domain H2

rad(RN), and assume

the following hypotheses:

(A1’)(a) There exists L < 0 such that lim supr→∞ a1(r; s) ≤ L for all s ∈ [0, δ].

(A1’)(b) For all s ∈ (0, δ], A1(s) has exactly two negative eigenvalues µ1(s) <

µ2(s), and 0 is not an eigenvalue of A1(s). For s = 0, A1(0) has exactly one

negative eigenvalue µ1(0), and µ2(0) = 0 is an eigenvalue of A1(0).

(S1’) a1(·; s) ∈ Cm+1
rad (RN) for each s, and the map s ∈ [0, δ] 7→ a1(·; s) ∈

Cm+1
rad (RN) is of class CK (with K as in (2.5)).

(S2’) a2(·; s) ∈ Cm+1
rad (RN) for each s ∈ [0, δ], the map s ∈ [0, δ] 7→ a2(·; s) ∈

Cm+1
rad (RN) is of class CK , g ∈ CK+m+4(RN × R× [0, δ]), and for all ϑ > 0,

the function g is bounded on RN× [−ϑ, ϑ]× [0, δ] together with all its partial

derivatives up to order K+m+ 4. Also, g = g(x, u; s) is radially symmetric

in x ∈ RN .

(A4) Denoting ϕj(·; s), j = 1, 2, the eigenfunction of A1(s) associated to µj(s),

normalized in the L2-norm, and satisfying ϕj(0; s) > 0, one has∫
RN
a2(x; 0)ϕ3

2(x; 0)dx 6= 0.

(NR’) Denoting ωj(s) :=
√
|µj(s)|, j = 1, 2, the vector ω(s) = (ω1(s), ω2(s)) is

nonresonant up to order K for all s ∈ (0, δ].

These hypotheses will be assumed to hold throughout Chapter 7.

Remark 2.3. (i) Since the operator A1(s) is restricted to radially symmetric

functions, its eigenvalues are automatically simple. Moreover, hypothesis

(S1’) implies that the eigenvalues µ1(s) and µ2(s) of A1(s) depend continu-

ously on s, see, e.g., [38].
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(ii) As long as the dependence of a2 and g on s is sufficiently regular (that is,

of class CK), no further information on how these functions depend on s is

required; in particular, one can consider the case when both functions are

independent of s.

(iii) Note that our framework includes the case g ≡ 0; in other words, the nonde-

generacy condition required to apply the KAM theory can be derived from

the quadratic terms of (2.3).

2.2 Existence of quasiperiodic solutions

A function u : (x, y) 7→ u(x, y) : RN × R → R is said to be quasiperiodic in y if

there exist an integer n ≥ 2, a nonresonant vector ω∗ = (ω∗1, . . . , ω
∗
n) ∈ Rn, and

an injective function U defined on Tn (the n-dimensional torus) with values in the

space of real-valued functions on RN such that

u(x, y) = U(ω∗1y, . . . , ω
∗
ny)(x). (x ∈ RN , y ∈ R). (2.6)

The vector ω∗ is called a frequency vector of u.

We emphasize that the nonresonance of the frequency vector is a part of our

definition. In particular, a quasiperiodic function is not periodic and, if it has

some regularity properties, its image is dense in an n-dimensional manifold dif-

feomorphic to Tn.

In our first theorem, we consider one of the following two settings:

(a) b ∈ R \ {0} is fixed and |s| ≥ 0 is sufficiently small,

(b) s ∈ R is fixed and |b| > 0 is sufficiently small.

We refer to the above assumptions on the smallness of one of the parameters (with

the other parameter fixed) as Case (a) and Case (b). It is understood here that

how small a parameter has to be depends on the other parameter (and the other

given data: the functions a1 and f).
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Theorem 2.4. Suppose that hypotheses (A1), (NR), (S1), (S2) (with K, m as in

(2.5)), and (A2) are satisfied. In both Cases (a) and (b), the following conclusion

holds. There exists a solution u(x, y) of equation (2.1) (with f as in (2.2)) such

that u(x, y)→ 0 as |x| → ∞ uniformly in y, and u(x, y) is quasiperiodic in y. In

fact, there is an uncountable family of such quasiperiodic solutions, their frequency

vectors forming a set of positive measure in Rn (n is as in (A1)(b)).

In Case (b), Theorem 2.4 is a perturbative result, where the quadratic and

cubic terms in f become small at the same rate, as b → 0. Case (a) is partly a

perturbative result as well, requiring the quadratic term to be small relative to

the cubic term. Note, however, that s = 0 with any fixed b > 0 is allowed in

Case (a). Thus, in the class of functions with no quadratic term, in particular, in

the class of functions which are odd in u, there is no smallness requirement and

Theorem 2.4 is not a perturbative result.

Remark 2.5. The statement of Theorem 2.4 can be strengthened as follows.

For an arbitrary ρ0 > 0, if b ∈ [−ρ0, ρ0] \ {0} is fixed, then the conclusion of

Theorem 2.4 holds for all s ∈ {0} ∪ ([−ρ0, ρ0] \ D1), where D1 ⊂ R is a finite

set; if s ∈ [−ρ0, ρ0] \ {0} is fixed, then the conclusion of Theorem 2.4 holds for

all b ∈ [−ρ0, ρ0] \D2 where D2 ⊂ R is a finite set containing 0. This is explained

in detail in Remark 5.5 and Lemma 5.2, where we also give a general sufficient

condition for the validity of the conclusion of Theorem 2.4. The condition is

formulated in terms of the functions a2, a3, but it is rather implicit and hard to

verify for specific choices of these functions (with the parameters s and b fixed),

unless a2 = 0. On the other hand, Remark 5.5 shows that the condition is satisfied

for all s, save for isolated values (with b 6= 0 fixed), if it is satisfied for some s;

and, likewise, it is satisfied for all b, save for isolated values, if it is satisfied for

some b (with s fixed).

In our next theorem, both parameters s ∈ R and b ∈ R \ {0} are fixed and

neither is required to be small.
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Theorem 2.6. Let a2 and f1 be as in (S2), and a1 as in (S1), where K, m

are constants satisfying (2.5). Suppose that conditions (A1), (NR), and (A3) are

satisfied and let s ∈ R, b ∈ R \ {0} be arbitrary. Then there is an open and dense

set B in Cm+1
b (RN) such that the conclusion of Theorem 2.4 holds for each a3 ∈ B.

We remark that, although it is easy to show that if a1 satisfies (A3), then the

set of functions a3 satisfying (A2) is open and dense, Theorem 2.6 does not follow

from Theorem 2.4. Indeed, Theorem 2.4 states that (A2) is a sufficient condition

for the validity of the conclusion if one of the parameters s, b is small, which is

not assumed in Theorem 2.6.

Remark 2.7. If the functions a1, a2 are radial, Theorem 2.6 remains valid if the

space Cm+1
b (RN) is replaced by Cm+1

rad (RN) (cp. Remark 5.6 below).

Our last theorem concerns equation (2.3).

Theorem 2.8. Suppose that hypotheses (A1’), (S1’), (S2’), (NR’) (with K, m as

in (2.5) and n = 2) and (A4) are satisfied. If δ > 0 is sufficiently small, then for

each s ∈ (0, δ] the following holds. There exists a solution u(x, y) of equation (2.3)

such that u(x, y) is radially symmetric in x, u(x, y)→ 0 as |x| → ∞ uniformly in

y, and u(x, y) is quasiperiodic in y. In fact, there is an uncountable family of such

quasiperiodic solutions, their frequency vectors forming an uncountable subset of

R2.

We remark that Theorem 6.3, below, contains a more general sufficient condi-

tion for the existence of quasiperiodic solutions of (2.3), which allows for quasiperi-

odic solutions with any n > 1 number of frequencies. Nevertheless, this condition

is quite difficult to verify for a specific choice of a1, a2 and g, even if g ≡ 0.

2.3 Validity of the hypotheses

In this section, we give examples of functions a1, a3 which satisfy the hypotheses

of Theorems 2.4 and 2.6. First of all, we show the robustness of the hypotheses.
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Proposition 2.9. Let k ≥ 0 be an integer.

(i) The set of all functions (a1, a3) ∈ C k
b (RN) × C k

b (RN) such that conditions

(A1), (NR), and (A2) are satisfied is open in C k
b (RN)× C k

b (RN).

(ii) The set of all functions a1 ∈ C k
b (RN) such that conditions (A1), (NR) are

satisfied is open in C k
b (RN), and so is the set set of all functions a1 ∈

C k
b (RN) such that all three conditions (A1), (NR), and (A3) are satisfied.

Proof. The results are consequences of standard perturbation results [38]. Suppose

first that (A1), (NR), are satisfied for some a1 ∈ C k
b (RN). The upper semicontinu-

ity of the spectrum, and the continuity of simple eigenvalues imply that (A1)(b),

(NR) remain valid if a1 is perturbed slightly in C k
b (RN). The same is obviously

true of (A1)(a). The simplicity of the eigenvalues implies that the normalized

eigenfunctions ϕ1, . . . , ϕn can be chosen such that they depend continuously on

a1 (in a small neighborhood of the unperturbed function) as H2(RN)-valued func-

tions. Standard elliptic regularity estimates allow us to bootstrap this continuity

to eventually show that ϕ1, . . . , ϕn depend continuously on a1 as W 2,p(RN)-valued

functions for any p ∈ (1,∞), and, in particular, as L4(RN)-valued functions. This

implies that if now a3 ∈ C k
b (RN) is such that (A2) holds, then (A2) will continue

to hold if a1 and a3 are perturbed slightly in C k
b (RN). Statement (i) is thus proved.

For statement (ii), we just need to observe, in addition, that the linear in-

dependence of the functions ϕ2
iϕ

2
j , 1 ≤ i ≤ j ≤ n, is preserved because of the

continuous dependence of ϕ1, . . . , ϕn on a1 (in a small neighborhood of the unper-

turbed function a1) as Lp(RN)-valued functions for any p ∈ (1,∞): a simple way

to see this is by considering a suitable Gram matrix of the functions ϕ2
iϕ

2
j .

To find examples of functions a1, a3 satisfying our hypotheses, we start with

the following statement concerning hypothesis (A1).

Proposition 2.10. There exists a radially symmetric function a1 ∈ C∞b (RN) such

that (A1) holds.
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Proof. If N = 1, take c ≥ 0 and consider an even function a1 ∈ C∞(R) such that

a1(x) ≡ −1 for |x| > 2, a1 ≡ c ∈ R for |x| < 3/2, and the rest of the values of a1

are between c and −1. If c is sufficiently large, then the operator −∆− a1(x) has

at least n negative eigenvalues. All these eigenvalues are automatically simple. If

c = 0, then a1 ≤ 0 and −∆− a1(x) has no eigenvalues in (−∞, 0]. Consequently,

for suitable intermediate values of c, −∆−a1(x) has exactly n negative eigenvalues

and 0 is not an eigenvalue.

Let now N ≥ 2. A similar continuity argument as above yields a radial poten-

tial such that (A1) holds for the restriction of the operator A1 = −∆ − a1(x) to

L2
rad(RN) (cp. Remark 2.2(iv)), but not necessarily in the full space L2(RN). To

show that (A1) holds without the restriction to L2
rad(RN), one has to make sure

that A1, in addition to having n negative eigenvalues with radial eigenfunctions,

has no negative eigenvalue with a nonradial eigenfunction (such an eigenvalue is

never simple for a radial potential). This has been done in [55]. More precisely,

Lemmas 2.2 and 2.3 of [55] show that there is a smooth radial function a1(x),

identical to −1 outside a sufficiently large ball, with the following property. The

operator A1 has at least n negative eigenvalues with radially symmetric eigenfunc-

tions (all these eigenvalues are simple) and, at the same time, 0 is the minimal

eigenvalue having a nonradial eigenfunction. We now replace a1 by a1 − d, where

d is a positive constant. This has the effect of shifting the spectrum σ(A1) to

σ(A1) + d. Obviously, choosing d suitably, we achieve that exactly n eigenvalues

remain in (−∞, 0), while all the other eigenvalues are contained in (0,∞). The

resulting operator then has all the desired properties.

Next, we deal with the nonresonance condition.

Lemma 2.11. For any integer K > 1 and any set of negative numbers µ1 < · · · <
µn, the set of all ε > 0 such that the vector ω(ε) = (

√
|µ1|+ ε, . . . ,

√
|µn|+ ε) is

nonresonant up to order K is open and dense in (0,∞). Consequently, the set of

all ε > 0 such that the vector ω(ε) := (
√
|µ1|+ ε, . . . ,

√
|µn|+ ε) is nonresonant

is residual, hence dense, in (0,∞).
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Proof. Obviously, it is sufficient to prove that for any fixed α = (α1, . . . , αn) ∈
Zn \ {0}, the function ε 7→ ω(ε) · α has only isolated zeros. This follows, since the

function is analytic in [0,∞), if we prove that it has a nonzero derivative of some

order at ε = 0. Suppose that, to the contrary, all the derivatives at ε = 0 vanish.

This implies that for all odd positive integers ` one has

α1

|µ1|
`
2

+ · · ·+ αn

|µn|
`
2

= 0.

Since the |µj| are mutually distinct, we conclude from this that α = 0, a contra-

diction.

Corollary 2.12. Let a1 be as in Proposition 2.10. Then there is ε > 0 such that

after replacing a1 by a1 + ε, hypothesis (A1) is satisfied and the vector (
√
|µ1|,

. . . ,
√
|µn|) is nonresonant. In particular, (NR) holds for any K.

Proof. When a1 is replaced by a1 + ε, the eigenvalues µ1, . . . , µn of −∆ − a1 get

replaced by µ1−ε, . . . , µn−ε. The result now follows from Lemma 2.11 (we choose

ε sufficient small, so that (A1) remains valid after the replacement).

We can now easily give examples of functions a1, a3 satisfying hypotheses (A1),

(NR), (A2).

Example 2.13. Proposition 2.10 and Corollary 2.12 yield a smooth radial func-

tion a1 satisfying (A1) and (NR) (for any K). Let a3 be a smooth bounded

function on RN which is sufficiently close, as a distribution, to δz (Dirac delta),

where z ∈ RN is not a zero of any of the eigenfunctions ϕj, j = 1, . . . , n (the

set of such z is open and dense in RN). Then (A2) holds. Alternatively, one can

take a smooth radial function a3 sufficiently close to the “radial δ-function” δρ,

where ρ > 0 is not a zero of any of the eigenfunctions ϕj, j = 1, . . . , n, viewed as

functions of r = |x| (in this view, the zeros of the eigenfunctions are isolated).

To justify these statements, note that for a3 ≈ δz, the matrix M1 in (A2) is

close to the matrix with entries

(2− δij)ϕ2
i (z)ϕ2

j(z) (i, j = 1, . . . , n).
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It is sufficient to show that this matrix has nonzero determinant. This follows,

since ϕ2
i (z) 6= 0 for i = 1, . . . , n, from the fact that the matrix whose diagonal

entries are all equal to 1 and the off-diagonal entries are all equal to 2 is nonsingu-

lar. (One can verify this by replacing the first row by the sum of all the rows and

then carrying out an elimination.) The radial case can be dealt with similarly.

Finally, we include hypothesis (A3) into consideration.

Proposition 2.14. For any positive integer K, there exists a radially symmetric

function a1 ∈ C∞rad(RN) such that hypotheses (A1), (NR), and (A3) are satisfied.

Proof. Without loss of generality, we may assume that K ≥ 8. Fix any such K.

As in Example 2.13, we first use Proposition 2.10 and Corollary 2.12 to find

a smooth radial function a1 satisfying (A1) and (NR). By (A1)(b), a1 has to be

positive somewhere, hence, by (A2)(a), a1 vanishes somewhere. Thus, there is

R0 such that a1(x) = 0 for |x| = R0. We now introduce a radial perturbation

of a1, modifying it near {x : |x| = R0} only, such that the perturbed function

vanishes identically in {x : R1 < |x| < R2} for some R1 < R2 near R0. This can

be done in such a way that the perturbation is small, as small as one wishes in the

supremum norm, but the perturbed function is smooth. By Proposition 2.9(ii),

(A1) and (NR) are unaffected by small perturbations.

Thus, we may proceed by assuming that a1 is a smooth radial function such

that a1 ≡ 0 on {x : R1 < |x| < R2}, for some R2 > R1 > 0, and (A1), (NR) hold.

We show that in this situation (A3) is satisfied without any further perturbations

of a1.

Assume first that N ≥ 2. For j = 1, . . . , n, the eigenfunction ϕj satisfies

∆ϕj + a1(x)ϕj + µjϕj = 0 in RN . (2.7)

In the radial variable r = |x|, this equation reads as follows:

ϕ′′j +
N − 1

r
ϕ′j + (a1(r) + µj)ϕj = 0, r > 0
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Here ϕ′j = dϕj/dr, and we are abusing the notation slightly by writing a1 = a1(r),

ϕj = ϕj(r) (and viewing them as functions of r ≥ 0). On the interval (R1, R2)

the equation simplifies, due to a1 ≡ 0:

ϕ′′j +
N − 1

r
ϕ′j + µjϕj = 0. (2.8)

Since µj < 0, the general solution of this equation, and therefore also the solution

ϕj on (R1, R2), can be expressed in terms of modified Bessel functions rescaled by

ωj :=
√
|µj|. More specifically, for some constants Cj1, Cj2 one has ϕj ≡ ϕ̃j on

(R1, R2), where

ϕ̃j(r) := Cj1r
1−N/2IN/2−1(ωjr) + Cj2r

1−N/2KN/2−1(ωjr). (2.9)

Here IN/2−1 and KN/2−1 are modified Bessel functions of the first and second

kind, respectively. Note that these functions are defined for all r ∈ (0,∞) and are

analytic in this interval (of course, the eigenfunctions ϕj themselves may not be

analytic outside (R1, R2)). The constants Cj1, Cj2 cannot be both equal to zero:

otherwise, ϕj ≡ 0 on [R1, R2], hence ϕj, as a solution of a second order equation,

vanishes identically on [0,∞), which is impossible for an eigenfunction.

We now recall the asymptotics of the modified Bessel functions as r →∞. For

j = 1, . . . , n, we have:

IN/2−1(ωjr) = Cje
ωjrr−1/2(1 +O(1/r)),

KN/2−1(ωjr) = Cje
−ωjrr−1/2(1 +O(1/r)),

(2.10)

with some nonzero constants Cj.

For 1 ≤ j ≤ ` ≤ n (we call such indices j, ` admissible), define

b(j, `) =



2ωj + 2ω` if Cj1 6= 0, C`1 6= 0,

−2ωj + 2ω` if Cj1 = 0, C`1 6= 0,

2ωj − 2ω` if Cj1 6= 0, C`1 = 0,

−2ωj − 2ω` if Cj1 = 0, C`1 = 0.
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Note that, as r →∞, we have, by (2.9), (2.10),

ϕ̃2
j(r)ϕ̃

2
`(r) ∼ r2−2Neb(j,`)r. (2.11)

Since (ω1, . . . , ωn) is nonresonant up to order 8, it follows that b(j, `) 6= b(j′, `′)

for all admissible (j, `) 6= (j′, `′). We can thus arrange all the admissible indices

in a finite sequence (j(k), `(k)), k = 1, . . . , n(n + 1)/2, such that b(j(k), `(k)) >

b(j(k′), `(k′)) if k < k′.

We now conclude the proof of the proposition by showing that, on (R1, R2),

the functions ϕ2
jϕ

2
` ≡ ϕ̃2

j ϕ̃
2
` , 1 ≤ j ≤ ` ≤ n, are linearly independent. For that

aim, let cj`, 1 ≤ j ≤ ` ≤ n, be constants such that

n∑
`=1

∑̀
j=1

cj`ϕ̃
2
j(r)ϕ̃

2
`(r) = 0 (2.12)

for all r ∈ (R1, R2). By the analyticity of ϕ̃j, (2.12) then holds for all r > 0. We

rewrite (2.12) as
n(n+1)/2∑
k=1

cj(k)`(k)ϕ̃
2
j(k)(r)ϕ̃

2
`(k)(r) = 0, (2.13)

where j(k) and `(k) are as above. Dividing this identity by r2−2Neb(j(1),`(1))r, we

obtain
n(n+1)/2∑
k=1

cj(k)`(k)

ϕ̃2
j(k)(r)ϕ̃

2
`(k)(r)

r2−2Neb(j(1),`(1))r
= 0. (2.14)

Since b(j(1), `(1)) > b(j(k), `(k)) for all k ∈ {2, . . . , n(n + 1)/2}, using (2.11) we

obtain

lim
r→∞

ϕ̃2
j(k)(r)ϕ̃

2
`(k)(r)

r2−2Neb(j(1),`(1))r

 = 0 for k ∈ {2, . . . , n(n+ 1)/2},

6= 0 for k = 1.

Thus, taking r →∞ in (2.14), we deduce that cj(1),`(1) = 0. We then successively

divide by r2−2Neb(j(k),`(k))r, k = 2, . . . , n(n + 1)/2, and take r → ∞ to conclude

that cj(k),`(k) = 0 for k = 1, . . . , n(n + 1)/2. Hence, all the coefficients in (2.12)

must vanish, which proves the desired linear independence.
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The case N = 1 can be treated similarly. This time, for r ∈ (R1, R2) the

eigenfunctions ϕj, j = 1, . . . , n, satisfy

ϕ′′j + µjϕj = 0.

Letting again ωj =
√
|µj| 6= 0, it follows that, on (R1, R2), one has ϕj ≡ ϕ̃j, where

ϕ̃j(r) = Cj1e
ωjr + Cj2e

−ωjr

with Cj1, Cj2 not both equal to 0. Using an argument based on the analyticity,

very similar to the one used above, our assertion follows.

Remark. The results in this section can be easily adapted to address the robustness

of hypotheses (A1’), (NR’), (S1’), (S2’), and (A4). For (A1’), let a1 be the function

from Proposition 2.10, with n = 2 negative eigenvalues. Replacing a1 by a1 −
(d − s), with d a suitable positive constant, yields a radially symmetric function

satisfying (A1’). Also, given K as in (2.5), if δ > 0 is sufficiently small, then,

using that the eigenvalues of A1(s) are isolated, there exists a constant C > 0

such that µ1(s) < C < 0 and C > 1/(Kµ2(s)) for all s ∈ [0, δ]. Hypothesis (NR’)

easily follows from this fact.

2.4 An outline of the proofs of the main theo-

rems

In the first step of the proof of Theorems 2.4 and 2.6, we write (2.1) as a system
du1

dy
= u2,

du2

dy
= A1u1 − f̃(u1).

(2.15)

Here, for any fixed (s, b), f̃(u)(x) = f(x, u(x); s, b) is the Nemytskii operator asso-

ciated to f , and A1 is the Schrödinger operator −∆− a1(x); they are considered

on suitable Hilbert spaces. Under our hypotheses, the linear operator A(u1, u2) =
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(u2, A1u1) has n pairs of complex conjugate eigenvalues on the imaginary axis, and

the rest of it spectrum does not intersect the strip {λ ∈ C : |Reλ| < γ}, where

γ > 0. Applying a center manifold theorem, we obtain a system of 2n ordinary

differential equations (the “reduced equation”):ξ̇ = h1(ξ, η),

η̇ = h2(ξ, η),
(2.16)

whose solutions are in one-to-one correspondence with a class of solutions of (2.15).

Our goal is to find quasiperiodic solutions of the reduced equation near the origin

(which is an equilibrium of (2.15)).

The second step is to write the reduced equation as a Hamiltonian system in

R2n with respect to a suitable symplectic form. The Darboux theorem then allows

us to choose local coordinates in which the system is Hamiltonian with respect to

the standard symplectic structure on R2n. It is well known by abstract results [48]

that all this can be done; but it is important for us to have the Hamiltonian of the

transformed system in as explicit a form as possible, at least up to the fourth-order

terms in its Taylor expansion. We rely here on known procedures to compute the

expansion for the center manifold, from which we obtain the expansion for the

first symplectic form and, subsequently, for the Darboux transformation.

In the third step, we write the Hamiltonian as the sum of an integrable Hamil-

tonian H0 and a perturbation H1, which is small in a class of finitely differentiable

functions. This is achieved by bringing the Hamiltonian to its Birkhoff normal

form to a sufficiently high order; the Birkhoff normal form provides the integrable

part, thanks to the nonresonance condition (NR). In the perturbation H1, we

include terms of high order of vanishing in (ξ, η). Again, it is important to have

some understanding of the second and fourth order terms in the expansion of H0

(the third order terms all vanish in the normal form), and, specifically, how the

functions a1, a2, a3 from the original PDE enter into these terms.

The final step consists in verifying that the integrable part H0 satisfies the

hypotheses of a suitable KAM-type theorem (we use a theorem by Pöschel [57]).
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Having computed the expansion of the Hamiltonian carefully when going through

the above transformations, we can easily translate a key nondegeneracy condition

from the KAM theorem to a condition on the functions a1, a2, a3. In the proof of

Theorem 2.4, where one of the parameters is small, the nondegeneracy condition

follows from our hypothesis (A2). In the proof of Theorem 2.6, we verify that

the nondegeneracy condition is satisfied for an open and dense set of functions a3.

The KAM theorem yields quasiperiodic solutions to the reduced equation (2.16),

and these correspond to y-quasiperiodic solutions of the original equation (2.1).

For the proof of Theorem 2.8, we show that if Φ is the Hamiltonian of the

reduced equation in Birkhoff normal form, under some assumptions it is possible

to find quasiperiodic solutions for the Hamiltonian system corresponding to Φ +

Φ2, from which we find quasiperiodic solutions of the original equation (2.3).

The nondegeneracy condition required to apply the aforementioned KAM-type

theorem will be a consequence of hypothesis (A4).



Chapter 3

The center manifold reduction

In this chapter, we first state an abstract center manifold theorem, based on the

exposition in [35, 70] (see also [21, 48]). Then we write equation (2.1) in a form

fitting the abstract setting, so that the hypotheses of the center manifold theorem

can be verified.

3.1 An abstract center manifold theorem

Let X and Z be Hilbert spaces such that Z ↪→ X (continuous imbedding). Con-

sider the following abstract equation with a parameter τ :

du

dt
= Au+R(u; τ), (t ∈ I). (3.1)

Here A ∈ L (Z,X), R : Z × Rd → Z, and I ⊂ R is an interval. We are

primarily interested in the case I = R, and we consider classical solutions of

(3.1), that is, functions u ∈ C 1(I, X) ∩ C (I, Z) satisfying (3.1). At this point,

the dimension d ≥ 0 of the parameter space Rd is arbitrary (d = 0 corresponds to

the equation with no parameters), but in our specific problems we will take either

τ = (s, b) ∈ R2 or τ = s ∈ R. We also fix an open and bounded set P ⊂ Rd and

make the following assumptions on R:

25
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(H1) There is a neighborhood V of 0 ∈ Z such that R ∈ C k(V ×Rd, Z) for some

k ≥ 2, and

R(0; τ) = 0, DuR(0; τ) = 0 (τ ∈P). (3.2)

In the following hypotheses concerning the spectral properties of the operator

A, we view it as an unbounded operator in X with domain D(A) = Z ⊂ X. While

we assume that Z and X are real spaces, for the spectral properties we consider,

as usual, the complexifications of Z, X, and A.

(H2) σ(A) = σc ∪ σh, where σh ⊂ {z ∈ C : |Re z| > γ} for some γ > 0 and σc

consists of finitely many purely imaginary eigenvalues with finite algebraic

multiplicities.

Hypothesis (H2) implies that the resolvent set of A is nonempty; moreover, A

is a closed operator whose graph norm is equivalent to the norm of Z. To the

decomposition σ(A) = σc ∪ σh, there corresponds the spectral projection Pc ∈
L (X), characterized uniquely by the properties that it commutes with A and

that its range Xc := PcX is spanned by the set of all generalized eigenvectors of

A corresponding to the eigenvalues in σc (see [38]). Clearly, Xc ⊂ Z. Letting

Ph := 1− Pc, we note further that Pc and Ph restrict to bounded operators on Z.

In particular, PhZ is a closed subspace of Z. When needed, we consider PhZ as

a Banach space with the norm induced from Z.

The third hypothesis concerns the resolvent of A:

(H3) There exist ω̂0 > 0 and c > 0 such that for all ω̂ ∈ R \ (−ω̂0, ω̂0) we have:

(a) iω̂ is in the resolvent set of A.

(b) ‖(iω̂ − A)−1‖L (X) ≤
c

|ω̂|
.

Theorem 3.1. Assume that hypotheses (H1)–(H3) are satisfied. Then there exist

a map σ ∈ C k(Xc × P̄, PhZ) and a neighborhood N of 0 in Z such that

σ(0; τ) = 0, Duσ(0; τ) = 0 (τ ∈P) (3.3)
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and for each τ ∈ P̄ the manifold

Wc(τ) = {u0 + σ(u0; τ) : u0 ∈ Xc} ⊂ Z

has the following properties:

(a) If u(t) is a solution of (3.1) on I = R and u(t) ∈ N for all t ∈ R, then

u(t) ∈ Wc(τ) for all t ∈ R; that is, Wc(τ) contains the orbit of each solution

of (3.1) which stays in N for all t ∈ R.

(b) If z : R→ Xc is a solution of the equation

dz

dt
= A

∣∣
Xc
z + PcR(z + σ(z; τ); τ) (3.4)

on some interval I, and u(t) := z(t) + σ(z(t); τ) ∈ N for all t ∈ I, then

u : I → Z is a solution of (3.1) on I.

Moreover, σ satisfies the following relations:

(i) σ(·; τ) ≡ 0 whenever τ ∈P is such that R(·; τ) ≡ 0;

(ii) if 2 ≤ ` ≤ k− 1 is an integer, then σ(u; τ) = O(‖u‖`+1) as u→ 0 whenever

τ ∈P is such that R(u; τ) = O(‖u‖`+1) as u→ 0.

Remark 3.2. Since ` ≤ k − 1, the notation σ(u; τ) = O(‖u‖`+1) as u → 0 in

(ii) simply means that the derivatives of σ(·; τ) up to order ` vanish at u = 0. If

this is true for all τ ∈ P̄, then, in view of compactness of P̄, we have σ(u; τ) =

O(‖u‖`+1), as u→ 0, uniformly for τ ∈ P̄, simply because the derivative of order

`+1 is bounded uniformly for u a neighborhood of 0 ∈ Xc and τ ∈ P̄. This simple

observation will be used below for other sufficiently smooth functions depending

on parameters.

With the exception of statements (i), (ii), the proof of the theorem can be

found in [35, 70], although a comment on the parameter dependence is necessary

here. In our formulation the manifold Wc(τ) is defined for all parameters τ ∈ P̄.
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It is more common to just take τ in a small neighborhood of some point τ0 (such a

local-parameter version of the theorem follows from a version without parameters,

cp. [35, Section 2.3.1], for example). If the center manifold were unique—which

is not the case in general—then, due to (3.2) and the compactness of P̄, the

global-parameter version would be a consequence of the local-parameter version.

Nonetheless, such a compactness argument can be made if we recall how the center

manifold theorem is proved, that is, how the function σ is found. This is done

by first modifying the nonlinearity outside a small neighborhood N 3 0 using

a suitable cutoff function, so that the new nonlinearity is globally Lipschitz in u

with a small Lipschitz constant. For the modified nonlinearity, one finds a unique

global center manifold, which then serves as local center manifold for the original

equation in the sense that statements (a) and (b) are satisfied. Our point is that,

under hypothesis (H1), the modification of the nonlinearity can be done once—

with one cut-off function—for all parameters in a neighborhood of the compact

set P̄. One then gets a function σ with the stated regularity properties and a

fixed neighborhood N such that (3.3) and statements (a), (b) hold.

The uniqueness of the global center manifold for the modified nonlinearity

implies that statement (i) holds: in fact, the center space Xc itself is the center

manifold whenever the modified nonlinearity vanishes identically, which is the case

when R(·; τ) vanishes identically.

Statement (ii) follows from a recursive computation of the Taylor expansion of

σ up to order k (although there is nonuniqueness of σ stemming from the choice of

the cutoff function, the Taylor expansion is uniquely determined). The procedure

is described in [36, Section 6] and [48, Section 2] and it goes as follows. The

starting point is the following identity for σ:

Duσ(u; τ)[A
∣∣
Xc
u+PcR(u+σ(u; τ); τ)] = A

∣∣
Xh
σ(u; τ)+PhR(u+σ(u; τ); τ) (3.5)

(cp. equation (2.10) in [48]). Now expand σ as

σ(u; τ) = σ2(u; τ) + · · ·+ σ`(u; τ) + σ′(u; τ),
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where, for j ∈ {2, . . . , `}, σj is a homogeneous PhZ-valued polynomial in u of

degree j (with τ -dependent coefficients) and ‖σ′(u; τ)‖Z = O(‖u‖`+1) as u → 0,

uniformly for τ ∈ P̄. Substituting in (3.5) and equating terms of the same order

one finds an equation for σj(·; τ), for each τ ∈ P̄:

Duσ
j(u; τ)A

∣∣
Xc
u− A

∣∣
Xh
σj(u; τ) = rj(u; τ), (3.6)

where rj(·; τ) is determined by the Taylor expansion of R(·; τ) at 0 of order j and

the terms σ2(·; τ), . . . , σj−1(·; τ) (if j = 2, r2 is determined by PhD
2
uR(0; τ) alone).

This equation determines the polynomial σj(·; τ) uniquely (see [36, 48] for explicit

forms of the solution). An induction argument then allows one to conclude that

R(u; τ) = O(‖u‖`+1) as u → 0 implies σ2(·; τ) = · · · = σ`(·; τ) = 0, which gives

the conclusion in (ii).

In the sequel, the function σ is called the reduction function, Xc the center

space, Wc the center manifold, and equation (3.4) is the reduced equation.

For us, the most important conclusion of Theorem 3.1 is statement (b): if

we can find a “small” solution of the reduced equation (3.4) (that is, ‖z(t)‖Z is

sufficiently small for all t), then we have a solution of the original equation via

the reduction function. Our goal is to find quasiperiodic solutions this way. Note

also that the reduced equation is an ordinary differential equation: the space Xc

is finite-dimensional due to hypothesis (H2).

3.2 Center manifold for equation (2.1)

We now verify that (2.1) can be rewritten as a system of the form (3.1), with

operators A and R, and spaces X and Z chosen in such a way that hypotheses

(H1)–(H3) hold with k = K + 1, K as in (2.5) if condition (A1), (S1), and (S2)

are satisfied. The center manifold for equation (2.3) can be obtained similarly,

with some minor changes which will be discussed in Chapter 7.

Fixing an integer m > N/2, as in (2.5), we set X = Hm+1(RN) × Hm(RN),

V = Z = Hm+2(RN) × Hm+1(RN). Note that the relation m > N/2 implies
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that Hm(RN) is continuously imbedded in a space of bounded Hölder continuous

functions on RN .

Further, we fix any finite ρ0 > 0 and set P := (−ρ0, ρ0)2 ⊂ R2.

Consider the Hm(RN)-realization of the Schrödinger operator −∆−a1(x), that

is, the operator u 7→ −∆u−a1u defined on Hm+2(RN). We will view it, as appro-

priate for the context, either as a bounded operator in L (Hm+2(RN), Hm(RN))

(which is justified when a ∈ Cm
b (RN)) or as an unbounded operator on Hm(RN)

with domain Hm+2(RN). Without fearing confusion, we use the same symbol A1

as in Section 2.1 for this operator, noting that, by elliptic regularity estimates, the

spectrum, the eigenvalues and their multiplicity, as well as the eigenfunctions do

not change if instead of the L2(RN)-realization we take the Hm(RN)-realization.

The abstract form of (2.1) is given by
du1

dy
= u2,

du2

dy
= A1u1 − f̃(u1; s, b),

(3.7)

where A1 is the Hm-realization of −∆−a1(x), as above, and f̃ : Hm+2(RN)×R2 →
Hm+1(RN) is the Nemytskii operator of f , that is, f̃(u; s, b)(x) = f(x, u(x); s, b).

In Appendix A.1, we verify that this operator is well defined.

System (3.7) can be written in the form (3.1) by defining the operator A on

X, with domain D(A) = Z, and R : Z × R2 → Z as

A(u1, u2) = (u2, A1u1)T ,

R(u1, u2; s, b) = (0, f̃(u1; s, b))T .
(3.8)

The smoothness of the operator R is inherited from the smoothness of f̃ , which

is shown in Appendix A.1 (see Theorem A.1 and Lemma A.3). More precisely, if

f satisfies (S2), then the map f̃ : Hm+2(RN)×R2 → Hm+1(RN) is of class CK+1

and so

R ∈ CK+1(V × R2, Z). (3.9)

In addition, relation (2.2) implies that R(0; s, b) = 0, DuR(0; s, b) = 0 for all

(s, b) ∈ R2.



31

In order to find the spectrum of A, viewed as an unbounded operator on X,

consider the problem

A

(
v1

v2

)
− λ

(
v1

v2

)
=

(
g1

g2

)
, (3.10)

where (g1, g2) ∈ X. Equivalently, (3.10) reads

v2 − λv1 = g1,

−∆v1 − a1(x)v1 − λv2 = g2,

and eliminating v2 we obtain

−∆v1 − a1(x)v1 − λ2v1 = g2 + λg1, (3.11)

where g2 + λg1 ∈ Hm(RN). From (3.11) we deduce that

σ(A) = {±
√
λ : λ ∈ σ(A1)}.

We know that, by (A1), σ(A1) contains exactly n negative eigenvalues µj, j =

1, . . . , n and the rest of the spectrum is contained in (γ2,∞), for some γ > 0

(see Remark 2.2(i)). We conclude that the spectrum of A contains 2n (purely)

imaginary eigenvalues ±i
√
|µj|, with simple multiplicities, and the rest of the

spectrum is contained in {λ ∈ C : |Reλ| > γ}. So we can write

σ(A) = σc ∪ σh,

with σc = {±i
√
|µj| : j = 1, . . . , n} and σh = σ(A) \ σc. The bound on the

resolvent of A (hypothesis (H3)(b)) is verified in Appendix A.2. We have thus

verified all the hypotheses of Theorem 3.1.

Hence, Theorem 3.1 with k = K + 1 applies in our problem. Moreover, fixing

s = 0 and applying statement (ii) (with just one parameter b), we obtain that, as

u→ 0,

σ(u; 0, b) = O(‖u‖3) (b ∈ (−ρ0, ρ0)). (3.12)

We now write the reduced equation in suitable coordinates. Denote

ωj :=
√
|µj|, j = 1, . . . , n.
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The eigenfunction of A associated to ±iωj is, up to a constant multiple, (ϕj,

±iωjϕj)T . (As in Section 2.1, ϕ1, . . . , ϕn are the eigenfunctions of A1 correspond-

ing to the eigenvalues µ1, . . . , µn, respectively, normalized in the L2-norm). Taking

real and imaginary part, we obtain the center space:

Xc = {(g, g̃)T : g, g̃ ∈ span{ϕ1, . . . , ϕn}}.

The spectral projection Pc : X → Xc corresponding to the imaginary eigenvalues

of A is given by

Pc

(
v1

v2

)
=

(
Πv1

Πv2

)
, (3.13)

where Π is the orthogonal projection of L2(RN) onto span{ϕ1, . . . , ϕn}. Indeed,

Π (or, more precisely, its restriction to Hm(RN)) is the spectral projection of A1

associated with the spectral set {µ1, . . . , µn}. Using this, one shows easily that

Pc, as defined in (3.13), commutes with A. It is obviously a projection: P 2
c = Pc.

Finally, its range is clearly the space Xc, thus Pc is the spectral projection, as

claimed.

Setting Xh = (1−Pc)X, we have Hm+1×Hm = Xc⊕Xh and, additionally, the

spaces Xc and Xh are orthogonal with respect to the (L2(RN))2-inner product.

For j = 1, . . . , n, let ψj = (ϕj, 0)T , ζj = (0, ϕj)
T , so

B = {ψ1, . . . , ψn, ζ1, . . . , ζn}

is a basis of Xc. If

ξ = (ξ1, . . . , ξn) ∈ Rn,

η = (η1, . . . , ηn) ∈ Rn,

ψ := (ψ1, . . . , ψn) : RN → R2n,

ζ := (ζ1, . . . , ζn) : RN → R2n,

we can write the center space as

Xc = {ξ · ψ + η · ζ : ξ, η ∈ Rn},
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where ξ · ψ = ξ1ψ1 + · · ·+ ξnψn, and similarly for η · ζ.

We use (ξ, η) ∈ R2n as coordinates on the center manifold. Let σ̂ : Xc× P̄ →
PhZ be the reduction function, as in Theorem 3.1. If (g, g̃) ∈ Xc, then there exists

a unique (ξ, η) ∈ R2n such that

(g, g̃) = ξ · ψ + η · ζ,

so

σ̂(g, g̃; s, b) = σ̂(ξ · ψ + η · ζ; s, b).

Thus, we can define σ : R2n × P̄ → PhZ by

σ(ξ, η; s, b) = σ̂(ξ · ψ + η · ζ; s, b). (3.14)

Defining further a function Λ : R2n × P̄ → PhZ as

Λ(ξ, η; s, b) = ξ · ψ + η · ζ + σ(ξ, η; s, b), (3.15)

the center manifold can be written as

Wc(s, b) = {Λ(ξ, η; s, b) : ξ, η ∈ Rn}.

We next find the matrix of A
∣∣
Xc

with respect to the basis B. Denoting ϕ :=

(ϕ1, . . . , ϕn), for any (ξ, η) ∈ R2n we have

A(ξ · ψ + η · ζ) = A

(
ξ · ϕ
η · ϕ

)
=

(
η · ϕ

A1(ξ · ϕ)

)
=

(
η · ϕ

(M0ξ) · ϕ

)
= η · ψ + (M0ξ) · ζ,

where M0 = diag(µ1, . . . , µn). Therefore, setting

MA =

[
0 1

M0 0

]
,

we find

A(ξ · ψ + η · ζ) = MA

(
ξT

ηT

)
·

(
ψT

ζT

)
.
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To write the reduced equation (3.4) in the coordinates (ξ, η), we use y for the

time variable and view ξ, η as functions of y: (3.4) becomes

d

dy
(ξ · ψ + η · ζ) = MA

(
ξT

ηT

)
·

(
ψT

ζT

)
+ Pc

(
0

f̃(Λ(ξ, η; s, b); s, b)

)
.

Equivalently, this equation can be written asξ̇ = h1(ξ, η; s, b),

η̇ = h2(ξ, η; s, b),
(3.16)

where ξ̇ = dξ/dy, η̇ = dη/dy, and

h(ξ, η; s, b) =

(
h1(ξ, η; s, b)

h2(ξ, η; s, b)

)
= MA

(
ξT

ηT

)
+

{(
0

Πf̃(Λ(ξ, η; s, b)); s, b)

)}
B

,

where Π is as in (3.13) and {·}B denotes the coordinates of the argument with

respect to the basis B.

We remark that system (3.7) is reversible (specifically, if (u1(x, y), u2(x, y))

a solution, so is (u1(x,−y),−u2(x,−y))). As a consequence, one can show a

reversibility property of the reduced equation [35, 48], but we do not employ this

additional structure.

The specific form of the nonlinearity, see (2.2), implies the following properties

of the reduction function σ.

Lemma 3.3. One has

σ(ξ, η; s, b) = sbσ2(ξ, η) + σ̃(ξ, η; s, b), (3.17)

where σ2 is a PhZ-valued homogeneous polynomial in (ξ, η) of degree 2 and σ̃ is a

CK+1 function on R2n × P̄ of order O(|(ξ, η)|3) as (ξ, η)→ (0, 0), uniformly for

(s, b) ∈ P̄.

Proof. Recall that σ(ξ, η; s, b) = σ̂(ξ ·ψ+ η · ζ; s, b) (cp. (3.14)), and the quadratic

term in the expansion of σ̂(·; s, b) is determined uniquely from (3.6) with j = 2
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(take σ̂ in place of σ there). For j = 2, the right hand side of (3.6) is given by

PhD
2
uR(0; τ)[u, u]/2. In our specific case,

D2
uR(0; τ)[u, u]/2 = (0, bsa2u

2
1))T (u = (u1, u2) ∈ Z)

(cp. (3.8), (2.2)). Using this, the uniqueness of the solution of (3.6), and the fact

that the left-hand side of (3.6) is linear in σ2, we obtain (3.17), with σ̃(ξ, η; s, b) =

O(|(ξ, η)|3) as (ξ, η) → (0, 0) for each (s, b). Relation (3.17) implies that σ̃ is

of class CK+1, which also gives the uniformity in (s, b) as stated in the lemma

(cp. Remark 3.2).

Remark. For the sake of notational simplicity, in the sequel, we sometimes omit

the argument (s, b) from R, σ, Λ, Wc, h, and other similar functions when there

is no need to emphasize the dependence on the parameters.

The following simple lemma will be useful in Chapter 4:

Lemma 3.4. Let DΛ(ξ, η) denote the derivative of Λ with respect to (ξ, η). Then,

in a neighborhood of the origin,

DΛ(ξ, η)h(ξ, η) = AΛ(ξ, η) +R(Λ(ξ, η)).

Proof. Fix (ξ0, η0) close to the origin, and let (ξ(y), η(y)) be the solution of (3.16)

with (ξ(0), η(0)) = (ξ0, η0). Substituting Λ(ξ, η) in (3.1), and using Theorem

3.1(b), we obtain

AΛ(ξ0, η0) +R(Λ(ξ0, η0)) =
d

dy
Λ(ξ, η)

∣∣∣∣
y=0

= DΛ(ξ, η)(ξ̇, η̇)
∣∣
y=0

= DΛ(ξ0, η0)(h1(ξ0, η0), h2(ξ0, η0))

= DΛ(ξ0, η0)h(ξ0, η0),

where we used (3.16) to derive the second to last equality.
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The reduced Hamiltonian

In this chapter, we write the reduced equation (3.16) as a Hamiltonian system

with respect to a certain symplectic structure on R2n. Using the Darboux the-

orem, we then transform it locally to a Hamiltonian system with respect to the

standard symplectic form. Finally, employing the Birkhoff normal form, we write

the Hamiltonian as the sum of of an integrable Hamiltonian and a small perturba-

tion. We compute the expansion of the integrable part explicitly up to order four;

this will later allow us to verify a nondegeneracy condition from a KAM theorem.

Throughout this chapter, we assume the standing hypotheses (A1), (S1), (NR),

and (S2) to be satisfied. We use the notation introduced in Chapter 3. In par-

ticular, we use the coordinates (ξ, η) as in Chapter 3.2 and view the reduction

function σ as a function of (ξ, η) (and the parameters (s, b)) with values in PhZ,

Z = Hm+2(RN)×Hm+1(RN), see (3.14).

4.1 The Hamiltonian and the symplectic struc-

ture

Define

F (x, u; s, b) =

∫ u

0

f(x, ϑ; s, b) dϑ.

36



37

For (u, v) ∈ Z, and any fixed (s, b) ∈ P̄, let

H(u, v) =

∫
RN

−1

2
|∇u(x)|2 +

1

2
a1(x)u2(x) + F (x, u(x); s, b) +

1

2
v2(x) dx. (4.1)

An integration by parts shows that

DH(u, v)(ū, v̄) =

∫
RN

(
∆u(x) + a1(x)u(x) + f(x, u(x); s, b)

)
ū(x) dx

+

∫
RN
v(x)v̄(x) dx.

In other words, (∆u+a1u+ f(·, u(·); s, b), v) is the gradient, ∇H(u, v), of H(u, v)

with respect to the (L2(RN))2 inner product.

Denoting by JL2 the operator on (L2(RN))2 given by

JL2 =

[
0 IL2

−IL2 0

]
,

IL2 being the identity operator on L2(RN), we can write equation (3.7) as

d

dy

(
u1

u2

)
= JL2∇H(u1, u2). (4.2)

Written this way, (3.7) fits the context of abstract Hamiltonian systems con-

sidered in [48]. General results from [48] can then be used to show that the

reduction of the equation to the center manifold is the Hamiltonian system with

respect to the Hamiltonian H restricted to the center manifold and with respect

to the symplectic form which is also the restriction of a symplectic form on the

space Z to the center manifold. Lemmas 4.1 and 4.2 below are essentially an

interpretation of these remarks in the coordinates (ξ, η), and they can certainly

be derived from [48]. But it is simple enough to prove them instead by direct

explicit computations, and we will do it that way. These explicit computations

will also help us find the Taylor expansion of the Hamiltonian up to order four.

Let Λ be as in (3.15). Recalling that for (ξ, η) ∈ R2n, Λ(ξ, η) and σ(ξ, η) are

elements of the product space Z = Hm+2(RN) × Hm+1(RN), we write them as
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Λ(ξ, η) = (Λ1(ξ, η),Λ2(ξ, η)) and σ(ξ, η) = (σ1(ξ, η), σ2(ξ, η)). Define

Φ(ξ, η) := H(Λ(ξ, η)) = H(u, v)

u=Λ1(ξ,η), v=Λ2(ξ,η)

((ξ, η) ∈ R2n). (4.3)

The parameters (s, b) ∈ P̄ will not be specifically included the notation until they

start playing a role again. For now they can be considered fixed.

In the next two lemmas, we show that the reduced equation (3.16) is the

Hamiltonian system corresponding to the Hamiltonian Φ and the symplectic form

ω defined on a neighborhood of the origin of R2n by

ω(ξ, η)
(
(t1, t2), (t̄1, t̄2)

)
= t1 · t̄2− t2 · t̄1 +

∫
RN
Dσ1(ξ, η)(t1, t2)Dσ2(ξ, η)(t̄1, t̄2) dx

−
∫
RN
Dσ2(ξ, η)(t1, t2)Dσ1(ξ, η)(t̄1, t̄2) dx

(
(ξ, η), (t1, t2), (t̄1, t̄2) ∈ R2n

)
,

(4.4)

where D denotes the derivative with respect to (ξ, η). Note that for all (ξ, η) and

(t1, t2) ∈ R2n the values σj(ξ, η) and Dσj(ξ, η)(t1, t2) are elements of Hm+1(RN),

hence they are functions of x ∈ RN . In the integrals above, and similar integrals

below, we suppress the argument x for the sake of notational simplicity.

For (ξ, η) ∈ R2n, the (ξ, η)-dependent matrix of the bilinear map ω(ξ, η) defined

by (4.4) is the block matrix:

S(ξ, η) :=

[
0 I

−I 0

]

+

∫
RN

[
∇ξσ1(ξ, η)

(
∇ξσ2(ξ, η)

)T ∇ξσ1(ξ, η)
(
∇ησ2(ξ, η)

)T
∇ησ1(ξ, η)

(
∇ξσ2(ξ, η)

)T ∇ησ1(ξ, η)
(
∇ησ2(ξ, η)

)T
]
dx

−
∫
RN

[
∇ξσ2(ξ, η)

(
∇ξσ1(ξ, η)

)T ∇ξσ2(ξ, η)
(
∇ησ1(ξ, η)

)T
∇ησ2(ξ, η)

(
∇ξσ1(ξ, η)

)T ∇ησ2(ξ, η)
(
∇ησ1(ξ, η)

)T
]
dx,

(4.5)

where I is the n × n identity matrix and ∇ξ, ∇η stand for the usual gradients

written as columns (so the blocks are n× n matrices).

Lemma 4.1. Let h = (h1, h2) be as in (3.16) and ω be as in (4.4). For all (ξ, η)

in a neighborhood of (0, 0) and (ξ̄, η̄) ∈ R2n we have

DΦ(ξ, η)(ξ̄, η̄) = ω(ξ, η)
(
h(ξ, η), (ξ̄, η̄)

)
. (4.6)
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Proof. Let 〈·, ·〉 denote the inner product in (L2(RN))2. Differentiating Φ with

respect to (ξ, η), we obtain, by (3.8), (4.2), and Lemma 3.4,

DΦ(ξ, η)(ξ̄, η̄) = DH(Λ(ξ, η))DΛ(ξ, η)(ξ̄, η̄)

=
〈
JL2

(
AΛ(ξ, η) +R(Λ(ξ, η))

)
, DΛ(ξ, η)(ξ̄, η̄)

〉
=
〈
JL2DΛ(ξ, η)h(ξ, η), DΛ(ξ, η)(ξ̄, η̄)

〉
.

Here, writing ϕ = (ϕ1, . . . , ϕn) and (a, b) ∈ R2n,

DΛ(ξ, η)(a, b) =

(
DΛ1(ξ, η)(a, b)

DΛ2(ξ, η)(a, b)

)
=

(
a · ϕ+Dσ1(ξ, η)(a, b)

b · ϕ+Dσ2(ξ, η)(a, b)

)
;

thus,

DΦ(ξ, η)(ξ̄, η̄) =

=

∫
RN

(
− h2(ξ, η) · ϕ−Dσ2(ξ, η)(h1(ξ, η), h2(ξ, η))

)(
ξ̄ · ϕ+Dσ1(ξ, η)(ξ̄, η̄)

)
dx

+

∫
RN

(
h1(ξ, η) · ϕ+Dσ1(ξ, η)(h1(ξ, η), h2(ξ, η))

)(
η̄ · ϕ+Dσ2(ξ, η)(ξ̄, η̄)

)
dx.

Since the eigenfunctions ϕ1, . . . , ϕn are L2(RN)-orthonormal,∫
RN

(−h2(ξ, η) · ϕ)(ξ̄ · ϕ)dx = −h2(ξ, η) · ξ̄,

and ∫
RN

(h1(ξ, η) · ϕ)(η̄ · ϕ)dx = h1(ξ, η) · η̄.

Now, σ takes values in Xh, which is (L2(RN))2-orthogonal to Xc (cp. (3.13)). It

follows that ∫
RN

(−h2(ξ, η) · ϕ)Dσ1(ξ, η)(ξ̄, η̄) dx = 0,

and similarly for the other integrals involving the product of a linear combination
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of the functions ϕj with Dσ1 or Dσ2. Thus,

DΦ(ξ, η)(ξ̄, η̄) = h1(ξ, η) · η̄ − h2(ξ, η) · ξ̄

+

∫
RN
Dσ1(ξ, η)(h1(ξ, η), h2(ξ, η))Dσ2(ξ, η)(ξ̄, η̄) dx

−
∫
RN
Dσ2(ξ, η)(h1(ξ, η), h2(ξ, η))Dσ1(ξ, η)(ξ̄, η̄) dx.

Therefore, with ω as in (4.4), we have

DΦ(ξ, η)(ξ̄, η̄) = ω(ξ, η)
(
h(ξ, η), (ξ̄, η̄)

)
.

Below, α denotes the standard symplectic form on R2n, that is, the constant

2-form given by

α(ξ, η) := (ξ, η)J(ξ, η)T (ξ, η ∈ Rn),

with the matrix

J =

[
0 I

−I 0

]
,

where I is the identity matrix in Rn.

Lemma 4.2. Let ω be the 2-form defined in (4.4). There is a neighborhood of

(0, 0) ∈ R2n independent of the parameters (s, b) ∈ P̄ on which ω is a symplectic

form of class CK.

Proof. Since σ = (σ1, σ2) is of class CK+1 as a Z-valued map (hence also as a

(L2(RN))2-valued map), the matrix-valued function (ξ, η)→ S(ξ, η), with S(ξ, η)

as in(4.5), is of class CK , that is, the form ω is of class CK .

Since σ(ξ, η) = O(|(ξ, η)|2) as (ξ, η) → (0, 0) (uniformly for (s, b) ∈ P̄),

(ω−α)(ξ, η) = O(|(ξ, η)|2) as well. This implies that there exists a neighborhood

of (0, 0) ∈ R2n independent of the parameters (s, b) ∈ P̄ on which ω is nonde-

generate. A straightforward computation, which we omit, shows that dω = 0,

so ω is a closed form. Obviously, the matrix S(ξ, η) is skew-symmetric. Thus ω

is a symplectic form in the aforementioned neighborhood of (0, 0) ∈ R2n for all

(s, b) ∈ P̄.
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Remark 4.3. When the parameters are taken into account, σ = (σ1, σ2) is of

class CK+1 in (ξ, η) ∈ R2n and (s, b) ∈ P̄, therefore the matrix-valued function

(4.5) is of class CK in (ξ, η) ∈ R2n and (s, b) ∈ P̄.

We now specifically consider the dependence of ω on (s, b) ∈ P̄; we write

ω(ξ, η; s, b) for the bilinear map defined in (4.4), stressing its dependence on

(s, b) ∈ P̄ via σ. The following result is a direct consequence of Lemma 3.3.

Corollary 4.4. One has

ω(ξ, η; s, b) = α(ξ, η) + s2b2ω2(ξ, η) + ω̃(ξ, η; s, b), (4.7)

where ω2 and ω̃(·, ·; s, b) are 2-forms on a neighborhood of (0, 0), ω2(ξ, η) is a

homogeneous polynomial in (ξ, η) of degree 2 (taking values in the space of skew-

symmetric bilinear maps), and ω̃(ξ, η; s, b) is of order O(|(ξ, η)|3) as (ξ, η) →
(0, 0), uniformly for (s, b) ∈ P̄.

Using Lemma 4.1, we can write equation (3.16) as

d

dy

(
ξ

η

)
= XΦ(ξ, η), (4.8)

where XΦ is the Hamiltonian vector field associated to Φ on a neighborhood of

0 ∈ R2n endowed with the symplectic form ω.

4.2 Transforming to the standard symplectic form

We recall the Darboux theorem:

Theorem 4.5. Let ω be a C k-symplectic form on a ball around 0 ∈ R2n and α

be the standard symplectic form on R2n. Then there exists a near-identity C k-

transformation φ such that

φ∗ω = α.
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Here φ∗ω, the pull-back of ω, is the form obtained from ω by the change

of coordinates (ξ, η) = φ(ξ′, η′). The effect of the change of coordinates from the

Darboux theorem on Hamiltonian systems is well known: any Hamiltonian system

with respect to the symplectic form ω transforms to a Hamiltonian system with

respect to the standard symplectic form α (and the transformed Hamiltonian).

We want to apply this change of coordinates to the symplectic form in (4.4).

It will be useful to choose the diffeomorphism φ—which is not unique—so that it

satisfies additional estimates, as stated in the following lemma.

Lemma 4.6. Let ω be the 2-form defined in (4.4). Then there exist a neighborhood

V of (0, 0) ∈ R2n and a CK map φ : V × R2 → R2n such that φ∗(·, ·; s, b)
ω(·, ·; s, b) = α, and one has

φ(ξ, η; s, b) = (ξ, η) + s2b2φ3(ξ, η) + φ̃(ξ, η; s, b), (4.9)

where φ3 : R2n → R2n is a homogeneous polynomial of degree 3 and φ̃ is (a

map of class CK which is) of order O(|(ξ, η)|4) as (ξ, η) → (0, 0), uniformly for

(s, b) ∈ P̄.

Proof. The statement holds if the map φ is constructed in a suitable way. We

recall briefly how the Lie transform method of the proof of the Darboux theorem

goes (see, e.g., [1, 37]).

For t ∈ [0, 1], let

ωt = α + t(ω − α),

so ω0 = α and ω1 = ω. For each (s, b) ∈ P̄, we seek a family of diffeomorphisms

φt satisfying φ0 = Id (the identity map in R2n), and

(φt)∗ωt = α,

so φ = φ1 is the desired transformation. Such φt is found as the flow of a t-

dependent vector field Xt; namely, φt has the desired property if

ωt(Xt, ·) = −λ, (4.10)
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where λ is a 1-form of class CK on a neighborhood of (0, 0) ∈ R2n such that

dλ = ω−α. The existence of such a 1-form is guaranteed by the Poincaré lemma

(because dω = 0), but, again, because of nonuniqueness, some care is needed in

selecting a “good” one. We claim that λ can be chosen such that

λ(ξ, η; s, b) = s2b2λ3(ξ, η) + λ̃(ξ, η; s, b), (4.11)

where λ3 is a 1-form whose coefficients are homogeneous polynomials of degree 3

and λ̃(ξ, η; s, b) = O(|(ξ, η)|4), as (ξ, η)→ (0, 0), uniformly for (s, b) ∈ P̄. Indeed,

this follows from Corollary 4.4 if one uses the Lie transform method in the proof

of the Poincaré lemma, which amounts to taking integrals with respect to (ξ, η)

of the coefficients of the 2-form ω − α (see the proofs in [1, Theorem 6.4.14] or

[61, Theorem 10.39]).

Now, ωt − α is of order O(|(ξ, η)|2) as (ξ, η)→ (0, 0) uniformly in (s, b) ∈ P̄,

t ∈ [0, 1]; in particular, ωt is nondegenerate near (0, 0). Thus we can solve (4.10)

for Xt uniquely; for this, we just need to invert the (ξ, η)-dependent matrix of the

bilinear map ωt and apply it to the coefficients of the 1-form on the left. This

yields the following form of the vector field Xt:

Xt(ξ, η; s, b) = s2b2X3(ξ, η) + X̃t(ξ, η; s, b)

where X3 is a homogeneous polynomial vector field of degree 3 and X̃t(ξ, η; s, b) =

O(|(ξ, η)|4), as (ξ, η) → (0, 0), uniformly for (s, b) ∈ P̄ and t ∈ [0, 1]. Moreover,

X̃t and Xt inherit the smoothness of α and ω: they are of class CK in (ξ, η) ≈ 0

and (s, b) ∈ P̄.

Finally, we take the flow φt of the vector field Xt. The vector field Xt vanishes

at (ξ, η) = (0, 0) together with its derivatives up to order 2. From this we obtain,

first of all, that near the origin (and for all (s, b) ∈ P̄) the flow is defined up

to t = 1. Computing the derivatives of φt with respect (ξ, η) by solving the

corresponding ODEs we conclude that φ = φ1 has the form as stated in Lemma

4.6.
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Remark 4.7. Note that (3.6) implies that the term σ2 in (3.17) and, consequently,

the term ω2 in (4.7) are determined by the quadratic term a2u
2 of the nonlinearity

f only – both are independent of the higher order terms a3u
3 + u4f1(x, u; s, b).

Examining the above proof carefully, one can check that the term φ3 is determined

only by ω2. This shows that φ3 is determined by a2 and is independent of a3 and

f1.

We now examine more closely the structure of the Hamiltonian Φ, first in

the original coordinates (ξ, η) introduced in Section 4.1, see (4.3), then in the

Darboux coordinates from Lemma 4.6. This is the content of the following two

results. We write Φ(ξ, η; s, b) for the Hamiltonian, accounting for its dependence

of the parameters (s, b). Recall that a1, a2, a3 are the functions in (2.2) and ϕ =

(ϕ1, . . . , ϕn), ϕj being the eigenfunctions of −∆− a1(x) as in Section 2.1.

Lemma 4.8. There is a neighborhood V of (0, 0) ∈ R2n such that the Hamiltonian

Φ defined in (4.3) has the following property. For each (ξ, η) ∈ V and (s, b) ∈ P̄

one has

Φ(ξ, η; s, b) =
1

2

n∑
j=1

(−µjξ2
j + η2

j ) +
sb

3

∫
RN
a2(x)(ξ · ϕ(x))3 dx

+
b

4

∫
RN
a3(x)(ξ · ϕ(x))4 dx+ s2b2Φ′4(ξ, η) + Φ′′(ξ, η; s, b), (4.12)

where Φ′4 is a homogeneous polynomial on R2n of degree 4 and Φ′′ is a CK-function

on V × P̄ such that Φ′′(ξ, η; s, b) = O(|(ξ, η)|5) as (ξ, η) → (0, 0), uniformly for

(s, b) ∈ P̄.

The regularity of Φ′′ is in fact one degree higher: it is of class CK+1; we take

CK here for consistency with the statement of Proposition 4.9 below, where a

degree of regularity is lost due to the Darboux transformation.

Proof of Lemma 4.8. Recalling (2.2), (4.1), and using an integration by parts, we
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write the functional H(u, v) as

H(u, v) =
1

2

∫
RN

(
∆u(x) + a1(x)u(x)

)
u(x) dx+

1

2

∫
RN
v2(x) dx

+
sb

3

∫
RN
u3(x) dx+

b

3

∫
RN
u3(x) dx+G1(x, u; s, b), (4.13)

where

G1(x, u; s, b) =

∫ u

0

ϑ4f1(x, ϑ; s, b) dϑ = u5

∫ 1

0

%4f1(x, u%; s, b) d%.

According to (4.3), (3.15), to obtain Φ(ξ, η), we need to substitute

u = ξ · ϕ+ σ1(ξ, η; s, b), v = η · ϕ+ σ2(ξ, η; s, b) (4.14)

in (4.13). Clearly, by Lemma 3.3, after substituting for u, the last 3 terms of

(4.13) give

sb

3

∫
RN
a2(x)(ξ · ϕ(x))3 dx+

b

4

∫
RN
a3(x)(ξ · ϕ(x))4 dx+ Φ′′(ξ, η; s, b),

where Φ′′ has the properties as stated in Lemma 4.8 (the function Φ′′, and later

Φ′4, will be modified in the course of this proof).

Next we substitute for u in the first integral in (4.13). Remembering that σ1

takes values in the L2(RN)-orthogonal complement of span{ϕ1, . . . , ϕn} (cp. (3.13))

and that both span{ϕ1, . . . , ϕn} and its orthogonal complement are invariant un-

der the operator A1 = −∆− a1, we are left with the following integrals (omitting

the argument x of the integrands)

1

2

∫
RN

(
− A1(ξ · ϕ)

)(
ξ · ϕ

)
dx+

1

2

∫
RN

(
− A1σ1(ξ, η; s, b)

)
σ1(ξ, η; s, b) dx. (4.15)

The first of these integrals is equal to

−1

2

n∑
j=1

µjξ
2
j ,

due to the relations A1ϕj = µjϕj and the L2(RN)-orthonormality of {ϕ1, . . . , ϕn}.
The second integral in (4.15) is equal to s2b2Φ′4(ξ, η) + Φ′′(ξ, η; s, b) for some func-

tions Φ′4, Φ′′ as in Lemma 4.8(a). This follows from Lemma 3.3, noting also that
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σ being a Z-valued CK+1 function implies that A1σ1 is an Hm-valued function of

class CK+1.

Finally, substituting v = η · ϕ + σ2(ξ, η; s, b) in the second integral in (4.13)

and using the orthogonality again, we obtain the following integrals:

1

2

∫
RN

(
η · ϕ

)2
dx+

1

2

∫
RN

(
σ2(ξ, η; s, b)

)2
. (4.16)

A similar argument as above shows that the first of these terms is equal to

1

2

n∑
j=1

η2
j

and the second one is equal to s2b2Φ′4(ξ, η) + Φ′′(ξ, η; s, b) for some functions Φ′4,

Φ′′ as in Lemma 4.8.

Summing up all the terms obtained above and redefining Φ′4, Φ′′, we see that

the conclusion of Lemma 4.8 holds.

The next proposition says that the structure of the Hamiltonian as given in

Lemma 4.8 remains unchanged after the Darboux change of coordinates given by

Lemma 4.6.

Proposition 4.9. Given (s, b) ∈ P̄, consider the change of coordinates (ξ, η) =

φ(ξ′, η′; s, b), where φ is as in Lemma 4.6, and let Φ(ξ′, η′; s, b) stand for the Hamil-

tonian Φ in the coordinates (ξ′, η′) (i.e., the function Φ(φ(ξ′, η′; s, b); s, b)). Then

there is a neighborhood V of (0, 0) ∈ R2n such that the conclusion of Lemma 4.8

remains valid with (ξ, η) replaced by (ξ′, η′).

Proof. Substituting (ξ, η) = φ(ξ′, η′; s, b) in (4.12) and using Lemma 4.6, it is

straightforward to verify that the statement of Lemma 4.8 remains valid (with

some new functions Φ′4, Φ′′) when (ξ, η) is replaced by (ξ′, η′).

Remark 4.10. The proof of Lemma 4.8 (see in particular formulas (4.15), (4.16))

reveals that the function Φ′4 in (4.12) is determined by the quadratic terms of

σ(·, ·; s, b) = (σ1(·, ·; s, b), σ2(·, ·; s, b)).
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When applying the transformation (ξ, η) = φ(ξ′, η′; s, b) in (4.12) one gets further

contribution to the new function Φ′4 from the cubic terms of φ(·, ·; s, b) only. By

Remark 4.7, this means that Φ′4 is determined only by the coefficient a2 in the

nonlinearity f (and is independent of a3 and f1).

4.3 The normal form

We now consider the Hamiltonian Φ in the coordinates (ξ′, η′), as in Proposition

4.9. According to that proposition,

Φ(ξ′, η′; s, b) =
1

2

n∑
j=1

(−µj(ξ′j)2 + (η′j)
2) +

sb

3

∫
RN
a2(x)(ξ′ · ϕ(x))3 dx

+
b

4

∫
RN
a3(x)(ξ′ · ϕ(x))4 dx+ s2b2Φ′4(ξ′, η′) + Φ′′(ξ′, η′; s, b), (4.17)

where Φ′4, Φ′′ are as in Lemma 4.8.

The reduced equation (3.16) written in the coordinates (ξ′, η′) is the Hamil-

tonian system corresponding to Φ with respect to the standard symplectic form

α. In this section, we will use further changes of coordinates, all of which are

canonical in the sense that they do not alter the symplectic form α.

The main result of this section is the following proposition.

Proposition 4.11. Let kB be an integer with 2 ≤ kB ≤ K/2− 1, where K is as

in (2.5), and let Φ = Φ(ξ′, η′; s, b) be as in (4.17) and Proposition 4.9. For each

(s, b) ∈ P̄ there is a smooth map φ̄ : V → R2n defined on a neighborhood V of

(0, 0) ∈ R2n such that the following statements are valid:

(a) φ̄ is a diffeomorphism onto its image, it is a canonical transformation, and

φ̄(ξ̄, η̄)− (ξ̄, η̄) = O(|(ξ̄, η̄)|3) as (ξ̄, η̄)→ (0, 0).

(b) Making the (canonical) change of coordinates

(ξ′, η′) = φ̄(ξ̄, η̄), (ξ̄, η̄) := (ξ̄1, . . . , ξ̄n, η̄1, . . . , η̄n), (4.18)
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let Φ(ξ̄, η̄) stand for the transformed Hamiltonian (that is, Φ(ξ̄, η̄) is ac-

tually the function Φ(φ̄(ξ̄, η̄); s, b)). Then, setting Ij = (ξ̄2
j + η̄2

j )/2 and

I = (I1, . . . , In), we have

Φ(ξ̄, η̄) = ω · I + Φ0(I) + Φ1(ξ̄, η̄), (4.19)

where Φ0 is a polynomial in I of degree at most kB, and Φ1 is of class CK

and of order O(|(ξ̄, η̄)|2kB+2) as (ξ̄, η̄)→ (0, 0).

(c) Φ0 is given by

Φ0(I) =
b

2
I ·MI +

s2b2

2
I · M̃I + P̂ (I), (4.20)

where P̂ (I) is a polynomial in I of degree at most kB with no constant, linear,

or quadratic terms, and M , M̃ are n× n matrices with entries independent

of (s, b) (the coefficients of P̂ (I) do depend on (s, b)). Moreover, the matrix

M is given explicitly as follows. Setting

Θ̂(i, j) =
1

4ωiωj

∫
RN
a3(x)ϕ2

i (x)ϕ2
j(x)dx,

the matrix M is given by

M = 3


Θ̂(1, 1) 2Θ̂(1, 2) . . . 2Θ̂(1, n)

2Θ̂(2, 1) Θ̂(2, 2)
...

...
. . . 2Θ̂(n− 1, n)

2Θ̂(n, 1) . . . 2Θ̂(n, n− 1) Θ̂(n, n)

 . (4.21)

Remark 4.12. (i) The only specific information on the dependence of the trans-

formed Hamiltonian on the parameters s, b that will be needed below is obtained

from (4.19), (4.20). Just for the sake of completeness, we add at this point that the

precise dependence on s, b of the transformation φ̄—and thus of the transformed

Hamiltonian—can be established from the normal-form computations. Namely,

the map φ = φ(ξ̄, η̄; s, b) is of class CK−2kB on V × P̄, for some neighborhood

V of (0, 0) ∈ R2n. Indeed, the transformation φ is the composition of finitely
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many transformations – Lie transforms of homogeneous polynomial vector fields

of degrees ` = 3, 4, . . . The vector field of degree ` is determined from the so-called

homological equation (see equation (4.24) below), which is a linear nonhomoge-

neous equation in the finite-dimensional space of homogeneous polynomial vector

fields of degree `. The matrix of this linear equation, in suitable coordinates (see

(4.27) below), is diagonal and its right-hand side is a homogeneous polynomial

whose coefficients are at least of class CK−2kB in (s, b). This implies that the

corresponding transformation can be chosen of class CK−2kB .

(ii) The matrix M̃ in (4.20) is determined by the function a2 and is independent

of a3, f1 (and s, b). We give an argument for this in Remark 4.14.

Proposition 4.11 shows that, after a canonical transformation, the Hamiltonian

Φ is the sum of a polynomial Hamiltonian depending only on I, and terms of high

order. In our application of a KAM theorem, the terms depending only on I will

be taken as an integrable analytic Hamiltonian, while the high order terms will be

considered as a small perturbation. Knowing explicitly the matrix M will allow

us to verify a nondegeneracy condition for the KAM theorem.

The proof of Proposition 4.11 consists in taking the Birkhoff normal form of

the Hamiltonian Φ up to order |(ξ̄, η̄)|2kB+1 and computing its terms explicitly up

to order |(ξ̄, η̄)|4.

We start by recalling a basic normal form theorem.

Theorem 4.13. Let k0 ≥ 4 and k ≥ k0 + 1 be integers, Ω ⊂ R2n be a domain

containing the origin, and H : Ω → R be a C k map. Assume that H = H2 + P ,

where

H2(ξ, η) =
n∑
j=1

ωj
ξ2
j + η2

j

2
,

P is of order O(|(ξ, η)|3) as (ξ, η) → (0, 0), and ω = (ω1, . . . , ωn) is nonresonant

up to order k0. Then there exist two neighborhoods U and V of 0, and a smooth

canonical transformation ν : U → V mapping (ξ̄, η̄) ∈ U to (ξ, η) ∈ V such that
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ν(ξ̄, η̄)− (ξ̄, η̄) is of order O(|(ξ̄, η̄)|2) as (ξ̄, η̄)→ (0, 0) and one has

H ◦ ν = H2 + Z +R,

where

(a) Z depends on (ξ̄, η̄) only via I = (I1, . . . , In), with Ij = (ξ̄2
j + η̄2

j )/2, and it is

a polynomial in I of degree at most [k0/2] ( [·] stands for the integer part).

(b) R is (of class C k and) of order O(|(ξ̄, η̄)|k0+1) as (ξ̄, η̄)→ (0, 0).

Proofs of this theorem, including algorithms to find the normal form Z, can be

found in many texts on Hamiltonian systems (see [7, 32, 37], for example). The

theorem tells us that we can write our Hamiltonian as in (4.19), but to explicitly

compute the terms of order four (order 2 in I), we need to recall some steps from

the proof, as found in the above references.

If h and g are C 2 functions on a domain in R2n, their Poisson bracket {h, g}
is defined by

{h, g} :=
n∑
j=1

(
∂h

∂ξj

∂g

∂ηj
− ∂h

∂ηj

∂g

∂ξj

)
. (4.22)

In the proof of Theorem 4.13 one successively eliminates the nonresonant terms

(as defined below) in the expansion of H. The cubic terms are all nonresonant

and they are eliminated by a first transformation. This transformation alters

terms of degree 4 and higher, but does not change the quadratic terms. The next

transformation eliminates the nonresonant terms from the (altered) fourth-order

terms, keeping the quadratic and cubic terms intact and altering the terms of

degree 5 and higher; and so on.

The transformations in this procedure are always found as the Lie trans-

forms corresponding to a polynomial Hamiltonian (which guarantees that they

are canonical). The key observation here is as follows. Let χ` be a homogeneous

polynomial on R2n of degree ` ≥ 3 and let ν` be the time-1 map of the Hamiltonian

flow with the Hamiltonian χ` (ν` is defined in a neighborhood of the origin and

it is a near identity transformation). Let now H = H2 + H3 + · · · + H` + h.o.t.,
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where H2 is as in Theorem 4.13, Hj is a homogeneous polynomial of degree j,

j = 2, . . . , `, and “h.o.t.” stands for terms of order greater than `. Then

H ◦ ν` = H2 +H3 + · · ·+H` + {H2, χ`}+ h.o.t. (4.23)

Thus, if χ` can be chosen such that

{H2, χ`} = −H`, (4.24)

then the terms of degree ` can be completely eliminated. This is always possible,

with a uniquely determined χ`, if ` is odd. If ` is even, only certain terms of

degree `, as specified below, can be eliminated by a suitable (nonunique) choice

of χ`.

In the first step of the above procedure, one takes the (unique) solution χ3 of

{H2, χ3} = −H3. (4.25)

The corresponding Lie transform ν3 eliminates the cubic terms and alters the

quartic terms as follows (see [7, 32, 37] for details):

H ◦ ν3 = H2 +H4 +
1

2
{{H2, χ3}, χ3}+ {H3, χ3}+ h.o.t.

= H2 +H4 +
1

2
{H3, χ3}+ h.o.t. (4.26)

where “h.o.t.” now stands for terms of order 5 or higher and (4.25) was used to

get the second equality in (4.26).

Thus, the new degree-four homogeneous polynomial is H4 + 1
2
{H3, χ3}. The

second step is to determine which terms in this polynomial can be eliminated by

the next transformation ν4. For this, we use the complex coordinates (α, β) =

(α1, . . . , αn, β1, . . . , βn) given by

(αj, βj) =
1√
2

(
ξj + iηj, i(ξj − iηj)

)
. (4.27)

We remark, without using this fact explicitly below, that when the homological

equation (4.24) is rewritten in the coordinates (α, β) and then as a linear system
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with respect to the basis consisting of the monomials, the coefficient matrix of

the system is diagonal. We employ the coordinates (α, β) only to identify the

fourth-order terms in (4.26) which are eliminated after the next transformation.

Substituting the inverse relations ξj = 1√
2
(αj − iβj), ηj = 1√

2
(βj − iαj), in the

Hamiltonian, we obtain a sum of homogeneous polynomials in (α, β) of the same

degrees as before the substitution. For the terms of degree 3 we find

H3(α, β) =
∑
J,L∈N2

|J |+|L|=3

hJL3 αJβL,

for some coefficients hJL3 , which allows us to express χ3 as

χ3(α, β) =
∑
J,L∈N2

|J |+|L|=3

hJL3

iω · (L− J)
αJβL, (4.28)

where J = (j1, . . . , jn) ∈ Nn, L = (`1, . . . , `n) ∈ Nn are multiindices, |J | =

j1 + · · · + jn, αJ = αj11 . . . αjnn , and similarly for βL. For the fourth order term

H̃4 := H4 + 1
2
{H3, χ3} in (4.26), we find coefficients hJL4 such that

H̃4(α, β) =
∑

|J |+|L|=4

hJL4 αJβL. (4.29)

We say a term hJLαJβL is resonant if ω · (J − L) = 0; otherwise, it is non-

resonant. Due to the nonresonance assumption on ω, for any |J | + |L| ≤ k0, in

particular for |J |+ |L| = 4, the term hJLαJβL is nonresonant if and only if J = L.

Now, the crux of the second step consists in choosing a homogeneous polynomial

χ4 (real in the coordinates (ξ, η)) such that the corresponding transformation ν4

eliminates all nonresonant terms in (4.29) while keeping the resonant terms intact.

The final form of the quartic terms in H ◦ ν3 ◦ ν4 is then obtained by substituting

(4.27) in the sum of all the resonant terms,∑
|J |=2

hJJ4 αJβJ , (4.30)
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and noting that for |J | = 2 one gets hJJ4 αJβJ = −hJJ4 IJ , with I = (I1, . . . , In) as

in Theorem 4.13.

To conclude these preparatory remarks, we rewrite (4.30) in a more convenient

way. For any J = (J1, . . . , Jn) with |J | = 2, there exist two integers 1 ≤ j2 ≤ j1 ≤
n such that either j2 < j1 and

Jj =

1 if j = j1 or j = j2

0 otherwise,

or j1 = j2 and

Jj =

2 if j = j1

0 otherwise.

Therefore, denoting h̄j1,j24 = hJJ4 , we have

∑
|J |=2

hJJ4 αJβJ =
n∑

j1=1

j1∑
j2=1

h̄j1,j24 αj1αj2βj1βj2 . (4.31)

Proof of Proposition 4.11. We apply the above normal form procedure to the

Hamiltonian Φ in (4.17). Recalling that ωj = |µj|1/2, we start with the canonical

change of coordinates

ξ′j =
1
√
ωj
ξj, η′j =

√
ωj ηj, (4.32)

so the quadratic part of Φ becomes

Φ2(ξ, η) :=
1

2

n∑
j=1

ωj(ξ
2
j + η2

j ),

as in Theorem 4.13 (needless to say, (ξ, η) no longer represent the original coordi-

nates on the center manifold). We write the Hamiltonian (4.17) in the coordinates

(ξ, η) as follows

Φ(ξ, η) = Φ2(ξ, η) + sbΦ3(ξ, η) + bΦ4(ξ, η) + s2b2Φ′4(ξ, η) + Φ′′(ξ, η; s, b),
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where, with ξ′ = (ξ′1, . . . , ξ
′
n), η′ = (η′1, . . . , η

′
n) and the ξ′j, η

′
j as in (4.32),

Φ3(ξ, η) =

∫
RN

a2

3
(ξ′ · ϕ)3 dx,

Φ4(ξ, η) =

∫
RN

a3

4
(ξ′ · ϕ)4 dx,

(4.33)

and Φ′4, Φ′′ are as in Lemma 4.8 (and (4.17)). Although Φ3 and Φ4 are independent

of η, for consistency we write them as functions of (ξ, η) anyway.

After the first step of the normal form procedure (cp. (4.25), (4.26)), taking

the unique homogeneous cubic polynomial vector field χ3 satisfying

{Φ2, χ3} = −Φ3, (4.34)

and ν3 the Lie transform corresponding to sbχ3, we obtain

Φ ◦ ν3 = Φ2 + Φ4 + s2b2Φ′4(ξ, η) + s2b2 1

2
{Φ3, χ3}+ h.o.t., (4.35)

where “h.o.t.” stands for terms of order O(|(ξ, η)|5) (we will not keep track of the

parameter dependence in the higher order terms).

After expanding (ξ′ · ϕ)4:

(ξ′ ·ϕ)4 =
n∑

j1,...,j4=1

ξ′j1ξ
′
j2
ξ′j3ξ

′
j4
ϕj1ϕj2ϕj3ϕj4 =

n∑
j1,...,j4=1

ξj1ξj2ξj3ξj4
(ωj1ωj2ωj3ωj4)

1/2
ϕj1ϕj2ϕj3ϕj4 ,

Φ4 becomes

Φ4(ξ, η) =
1

4

n∑
j1,...,j4=1

ξj1ξj2ξj3ξj4
(ωj1ωj2ωj3ωj4)

1/2

∫
RN
a3ϕj1 . . . ϕj4dx.

Setting

Θ(j1, j2, j3, j4) =
1

4(ωj1ωj2ωj3ωj4)
1/2

∫
RN
a3ϕj1 . . . ϕj4dx,

we can write

Φ4(ξ, η) =
n∑

j1,...,j4=1

Θ(j1, . . . , j4)ξj1 . . . ξj4 . (4.36)
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As in the above remarks, we use the complex variables (4.27), so

ξj =
1√
2

(αj − iβj), ηj =
1√
2

(βj − iαj).

(This change of variables is used only to identify the resonant terms in (4.36),

and we revert to the variables (ξ, η) afterwards.) We must now write the product

ξj1ξj2ξj3ξj4 in terms of (α, β) = (α1, . . . , αn, β1, . . . , βn). Since resonant terms are

given by (4.31), we seek terms of the form αjα`βjβ`, with j, ` ∈ {1, . . . , n}. One

verifies easily that such terms arise from the monomial ξj1ξj2ξj3ξj4 only if j(1) = j(2)

and j(3) = j(4), where ((1), (2), (3), (4)) is a permutation of (1, 2, 3, 4). For any such

monomial, we have j(1) = j(2) = j and j(3) = j(4) = ` for some j, ` ∈ {1, . . . , n}
and

ξj1ξj2ξj3ξj4 = ξ2
j ξ

2
`

=
1

4
(α2

jα
2
` − 2iαjα

2
`βj − α2

`β
2
j − 2iα2

jα`β` − 4αjα`βjβ`

+ 2iα`β
2
jβ` − α2

jβ
2
` + 2iαjβjβ

2
` + β2

jβ
2
` ). (4.37)

If j 6= `, the only resonant term in (4.37) is −αjα`βjβ`. If j = `, then the

resonant terms are −αjα`βjβ`− (1/4)(α2
`β

2
j + α2

jβ
2
` ). Thus, for any given j, `, the

contribution of ξ2
j ξ

2
` to the resonant terms is given by −αjα`βjβ` if j 6= ` and

−(3/2)α2
jβ

2
j if j = `.

Note that if j = `, then there is only one permutation of (j, j, j, j), whereas

if j 6= `, there are six different permutations of (j, j, `, `); thus, the term ξ4
j , for

j fixed, appears only once in (4.36), while, for j 6= ` fixed, the term ξ2
j ξ

2
` = ξ2

` ξ
2
j

appears precisely six times.

These remarks imply that, in terms of (α, β),

Φ4(ξ, η) = −3

2

n∑
j=1

Θ(j, j, j, j)α2
jβ

2
j − 6

n∑
j=1

j−1∑
`=1

(−Θ(j, j, `, `))αjβjα`β` +

+ nonresonant terms.
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Since αjβj = i(ξ2
j + η2

j )/2,

Φ4(ξ, η) =
3

2

n∑
j=1

Θ(j, j, j, j)

(
ξ2
j + η2

j

2

)2

+ 6
n∑
j=1

j−1∑
`=1

Θ(j, j, `, `)

(
ξ2
j + η2

j

2

)(
ξ2
` + η2

`

2

)
+ nonresonant terms.

This can be written, with Ij = (ξ2
j + η2

j )/2, I = (I1, . . . , In), Θ̂(j, `) = Θ(j, j, `, `),

as

Φ4(ξ, η) =
3

2

n∑
j=1

Θ̂(j, j)I2
j + 3

n∑
j,`=1
j 6=`

Θ̂(j, `)IjI` + nonresonant terms

=
1

2
I ·MI + nonresonant terms,

where M is as in (4.21). Here, under “nonresonant terms” we group the terms

which get eliminated after the second transformation in the normal form proce-

dure.

Similarly,

s2b2

(
Φ′4(ξ, η) +

1

2
{Φ3, χ3}

)
= s2b2 1

2
I · M̃I + nonresonant terms,

for some n × n matrix M̃ determined only by Φ′4(ξ, η) + {Φ3, χ3}/2. Thus, the

second transformation results in the quartic terms (I ·MI+s2b2IM̃I)/2, as stated

in Proposition 4.11.

The subsequent steps in the normal form procedure do not alter the terms

up to order 4. Carrying out the procedure up to order 2kB + 1, we obtain, as a

consequence of Theorem 4.13, all the statements of Proposition 4.11.

Remark 4.14. It will be useful to note that since the matrix M̃ is determined

only by Φ′4(ξ, η) + {Φ3, χ3}/2, it is independent of a3. Indeed, Φ3 and χ3 are

determined by a2 (see (4.33), (4.34)) and, by Remark 4.10, the same is true of Φ′4.



Chapter 5

An application of a KAM-type

result: proofs of Theorems 2.4,

2.6

In this chapter, we find quasiperiodic solutions of the reduced equation via an

application of a KAM-type theorem. The application is rather standard: after

the results from the previous chapters, we are dealing with a finite-dimensional

Hamiltonian system with an elliptic equilibrium at (0, 0) whose frequencies are

rationally independent to a high order. The main issue is the verification of a

nondegeneracy condition. And, of course, we need a finite-differentiability version

of the KAM theorem. We use a theorem by Pöschel [57] for this purpose.

To recall the theorem, consider a Hamiltonian H : Tn × Ω→ R given by

H(θ, I) = H0(I) +H1(θ, I), (5.1)

where Ω ⊂ Rn is a domain, and Tn is the n-dimensional torus (in other words,

H1(θ, I) is periodic in θ1, . . . , θn with a common period, 2π, say). The Hamiltonian

system corresponding to H is

θ̇ = ∇IH(θ, I),

İ = −∇θH(θ, I).
(5.2)

57
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We make the assumption that H0 is analytic on Ω and its frequency map

ω∗(I) := ∇H0(I) : Ω→ Rn is a diffeomorphism onto its image

V := {ω∗(I) : I ∈ Ω};

in particular, the Hessian matrix

∂2H0

∂I2
(I)

is nonsingular on Ω. Moreover, we assume that there is a complex neighborhood

Ωρ of Ω,

Ωρ =
⋃
I∈Ω

{ζ ∈ Cn : |ζ − I| < ρ} (5.3)

with ρ > 0, such that H0 has an analytic extension to Ωρ whose Hessian is

nonsingular on Ωρ and ω∗(I) is a one-to-one map of Ωρ onto its image in Cn.

The perturbation term H1 is assumed sufficiently small (as specified in the the-

orem, see equation (5.8)) in a Hölder norm: if ϑ > 0 is a noninteger, ‖H‖C ϑ(Tn×Ω)

is the infimum of all M satisfying the following inequalities:

‖DJH(θ, I)‖L∞(Tn×Ω) ≤M for all J ∈ N2n, |J | ≤ [ϑ],

and

sup
θ,θ′∈Tn
θ 6=θ′

|DJH(θ, I)−DJH(θ′, I)|
|θ − θ′|ϑ−[ϑ]

≤M, sup
I,I′∈Ω
I 6=I′

|DJH(θ, I)−DJH(θ, I ′)|
|I − I ′|ϑ−[ϑ]

≤M

for all J ∈ N2n such that |J | = [ϑ]. Here [ϑ] is the integer part of ϑ and, for

J = (j1, . . . , jn, `1, . . . , `n),

DJ =
∂|J |

∂θj11 . . . ∂θjnn ∂I
`1
1 . . . ∂I`nn

, |J | = j1 + · · ·+ jn + `1 + · · ·+ `n.

A vector ω ∈ Rn is said to be κ, ν-Diophantine, for some κ > 0 and ν > n− 1,

if

|ω · α| ≥ κ|α|−ν (α ∈ Zn \ {0}). (5.4)
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For κ > 0 and ν > n− 1, we define

Vκ := {ω ∈ V : dist(ω, ∂V ) ≥ κ and ω is κ, ν-Diophantine}. (5.5)

(We only emphasize the dependence on κ of the set Vκ in our notation, since in

our proofs ν will always be fixed.)

The following statement is contained in [57, Theorem A].

Theorem 5.1. Let Ω, H0, ρ, and V be as above. Suppose additionally that for

some R > 0 one has∣∣∣∣∂2H0

∂I2
(I)

∣∣∣∣ ,
∣∣∣∣∣
(
∂2H0

∂I2

)−1

(I)

∣∣∣∣∣ ≤ R (I ∈ Ωρ). (5.6)

Fix constants λ, ν and α satisfying

λ > ν + 1 > n, α > 1, α 6∈ {`/λ+ j : j, ` ∈ N}. (5.7)

Then there exists δKAM, depending on n, ν, λ, ρ, R (but independent of Ω and κ),

such that for any κ ∈ (0, ρ/R) and H1 ∈ C αλ+λ+ν(Tn × Ω) satisfying

‖H1‖Cαλ+λ+ν(Tn×Ω) ≤ κ2δKAM (5.8)

the Hamiltonian H = H0 + H1 has the following property. There exists a dif-

feomorphism T : Tn × V → Tn × Ω of class C α such that for each I ∈ Ω with

ω∗(I) ∈ Vκ the manifold T̃I := T (Tn× ω∗(I)) is invariant under the flow of (5.2)

and the solution of (5.2) with the initial condition T (θ0, ω
∗(I)), θ0 ∈ Tn, is given

by T (θ0 + ω∗(I)t, ω∗(I)), t ∈ R.

We remark that [57, Theorem A], besides having additional statements, is

more precise in using a weaker norm in (5.8) and giving a stronger (anisotropic)

regularity of the transformation T .

The stated property of the diffeomorphism T can be phrased, as it usually is,

in the following way: T conjugates the flow of (5.2) to a flow for which each torus

TN × {ω̄}, ω̄ ∈ Vκ is invariant and whose restriction to this torus is a linear flow
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with frequencies ω̄. The transformation T is not necessarily canonical, but this is

of no concern to us.

The theorem provides a class of quasiperiodic solutions of (5.2) whose fre-

quencies cover Vκ. Of course, to use this conclusion, we want Vκ 6= ∅, or, better,

|Vκ| > 0, where | · | stands for the Lebesgue measure.

In an application of the above results, we want to put our Hamiltonian system

in the framework of Theorem 5.1. We will be working with the Hamiltonian

Φ(ξ̄, η̄) as in Proposition 4.11. This is the Hamiltonian of the reduced equation

put in the normal form up to a high order (the order is to be specified). We

introduce the action-angle variables I = (I1, . . . , In) ∈ Rn, θ = (θ1, . . . , θn) ∈ Tn

by

(ξ̄j, η̄j) =
√

2Ij(cos θj, sin θj).

The change of coordinates from (ξ̄j, η̄j) to (θ, I) is defined in regions where Ij =

ξ̄2
j + η̄2

j > 0 for all j ∈ {1, . . . , n}, and it is well known that this transformation

is canonical. Thus, the relation between the Hamiltonian and the corresponding

Hamiltonian system, after both have been written in the (θ, I)-coordinates, is as

in (5.2).

The domain Ω we will be working with is

Ω = Ωq := {I ∈ Rn : q ≤ Ij ≤ 2q (j = 1, . . . , n)} (5.9)

where q > 0 is sufficiently small, as specified below (we write Ωq when we want

to stress the dependence on q).

In the next lemma, we fix constants α, λ, and ν such that

3n > αλ+ λ+ ν and relations (5.7) hold. (5.10)

One shows easily that such a choice is possible (for example, take α, λ, ν as in

(5.7) with λ ≈ ν + 1 ≈ n, α ≈ 1).

Lemma 5.2. Suppose the hypotheses (A1), (A2), (S1), (S2), and (NR) are sat-

isfied. Set kB = [K/2] − 1, and let Φ(ξ̄, η̄) be as in Proposition 4.11 and M , M̃
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as in (4.20). Assume further that (s, b) ∈ P̄ is such that the following condition

is satisfied:

the n× n-matrix M + s2bM̃ is nonsingular. (5.11)

With Ω as in (5.9), let Φ(θ, I), (θ, I) ∈ Tn × Ω, stand for the Hamiltonian Φ in

the coordinates (θ, I). Fix constants α, λ, ν satisfying (5.10). Then there exists

q∗ > 0 such that for each q ∈ (0, q∗) the following statements are valid. One can

write Φ(θ, I) = H0(I) +H1(θ, I), where:

(a) H0 is a polynomial in I, and there are R, ρ > 0 such that (5.6) holds (with

Ωρ as in (5.3)) and the map I 7→ ω∗(I) = ∇H0(I) is one-to-one on Ωρ. We

denote by V the image of Ω under this map ω∗.

(b) H1 ∈ C αλ+λ+ν(Tn × Ω) and, with R, ρ as in statement (a) and δKAM =

δKAM(n, ν, α, ρ, R) as in Theorem 5.1, there is κ ∈ (0, ρ/R) such that (5.8)

holds and |Vκ| > 0 (Vκ is defined in (5.5)).

The choice of functions H0, H1 in this statement is naturally given by Propo-

sition 4.11:

H0(I) = ω · I + b
1

2
I ·MI +

s2b2

2
I · M̃I + P̂ (I),

H1(θ, I) = Φ(θ, I)−H0(I).

(5.12)

In particular, the frequency map is given by

ω∗(I) = ω + b(MI + s2bM̃I) +∇P̂ (I), (5.13)

where the vector polynomial ∇P̂ (I) has no constant or linear terms.

In preparation for the proof of Lemma 5.2, we estimate the size of the set Vκ,

when κ is proportional to q.

Lemma 5.3. Assume that (5.11) holds. Consider the frequency map (5.13) on

Ω = Ωq and let V be its range. There exist constants q∗, m1 > 0, and C1 > 0

(independent of q) such that

|{ω̄ ∈ V : dist(ω̄, ∂V ) ≥ C1q}| ≥ m1q
n (q ∈ (0, q∗)). (5.14)
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Proof. For q > 0 small, the map ω∗ is a bijection from Ω onto V , such that both ω∗

and its inverse have a Lipschitz constant independent of q. This is a consequence

of (5.13), (5.11). The result follows from this and the following obvious estimate,

where C > 0 and ε > 0 are independent of q and ε is sufficiently small:

|{I ∈ Ωq : dist(I, ∂Ωq) > εq}| > Cqn.

Lemma 5.4. Let ω∗, V be as in Lemma 5.3. Then for all sufficiently small q > 0,

κ > 0 one has

|V \D(κ, ν)| ≤ cκqn−1,

where c > 0 is a constant (independent of q and κ).

Proof. Note that for small q > 0 the set V is contained in a ball of radius 2b‖M +

s2bM̃‖q
√
n, hence also in an n-dimensional cube Q with the edge of length 4b‖M+

s2bM̃‖q
√
n. This implies (see, for example, [66, Theorem 9.3]) that

|Q \D(κ, ν)| ≤ cκqn−1,

where c depends only on n, ν and b‖M + s2bM̃‖. Since V ⊂ Q, our assertion

follows.

Proof of Lemma 5.2. Let α, λ, and ν be as in (5.10). Since K > 6(n + 1), kB :=

[K/2]− 1 satisfies

K ≥ 2kB + 2 > 6(n+ 1) > 2([αλ+ λ+ ν] + 1) + 3. (5.15)

Define H0, H1 as in (5.12), where the notation comes from Proposition 4.11.

Note, first of all, that H0 is a polynomial in I. Due to the assumption (5.11),

if q∗ > 0, ρ > 0 are sufficiently small and q ∈ (0, q∗), then H0 extends to (the

same polynomial on) Ωρ
q (Ωq is as in (5.9)), its frequency map ω∗ is one-to-one on

Ωρ
q , and for some R independent of q ∈ (0, q∗) relations (5.6) hold. This verifies

the properties of H0 stated in (a) with some constants ρ, R, which will no longer

be changed.
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We denote by V the image of Ωq under the map ω∗ = ∇H0.

Remember that in Proposition 4.11, the Birkhoff normal form is taken up to the

order 2kB + 1, so, in the variables (ξ̄, η̄), H1 is a CK map of order O(|(ξ̄, η̄)|2kB+2)

as (ξ̄, η̄)→ (0, 0). In the variables (θ, I), H1 is a CK map on Tn × Ωq and, since

for I ∈ Ωq one has Ij > q for all j (this controls the singularities introduced

by differentiating
√
Ij) and |I| ≤ q

√
n, using (5.15) and making q∗ smaller, if

necessary, we find a positive constant C2 such that

‖H1‖Cαλ+λ+ν(Tn×Ωq) ≤ C2q
3 (q ∈ (0, q∗)). (5.16)

Recall further that the frequency map ω∗ : Ωq → V is as in (5.13). Making

q∗ smaller if necessary, we find constants C1 and m1, as in Lemma 5.3, such that

(5.14) holds. With c as in Lemma 5.4, we set C3 := min{C1,m1/(2c)} and take

κ := C3q. Making q∗ smaller again, we achieve that for each q ∈ (0, q∗) one has

0 < κ < ρ/R and the estimates in Lemmas 5.3 and 5.4 both apply. This yields

|V \D(κ, ν)| ≤ m1q
n/2 and |{ω̄ ∈ V : dist(ω̄, ∂V ) ≥ κ}| ≥ m1q

n, thus

|Vκ| ≥
m1

2
qn.

Finally, let δKAM > 0 be the constant in (5.8) (independent of κ and Ω).

Making q∗ smaller one more time, we make the following hold:

q∗ ≤ C2
3

C2

δKAM.

Then, for q ∈ (0, q∗), κ = C3q, relation (5.16) gives

‖H1‖Cαλ+λ+ν(Tn×Ωq) ≤ C2q
3 =

C2

C2
3

κ2q ≤ C2

C2
3

κ2C
2
3

C2

δKAM = κ2δKAM,

so (5.8) is satisfied. Thus all statements in (b) have been verified and the proof

is complete.

We can now give the proofs of Theorems 2.4 and 2.6.
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Proof of Theorem 2.4. Under the assumptions of Theorem 2.4, the matrix M in

(5.11) is nonsingular, hence (5.11) holds if either b 6= 0 is fixed and s is sufficiently

small (possibly s = 0), or s is fixed and b 6= 0 is sufficiently small. Lemma 5.2

tells us that Theorem 5.1, with a suitable choice of the constants, applies to our

Hamiltonian Φ in the action-angle variables (θ, I) and, moreover, |Vκ| > 0. This

yields, as noted above, quasiperiodic solutions of the corresponding Hamiltonian

system with trajectories contained in Tn × Ωq: there are such quasiperiodic solu-

tions with frequency vector ω∗, for all ω∗ ∈ Vκ. Adjusting q > 0, we can make

these solutions as close to Tn × {0} as we like.

We now reverse all the changes of variables (action-angle variables, normal

form transformation, the Darboux transformation) to get back to the reduced

equation (4.8), and find its quasiperiodic solutions (ξ(y), η(y)) with frequencies

covering Vκ. The trajectories of these solutions are contained in a small neighbor-

hood of 0 ∈ R2n. For any such solution, we have

Λ(ξ(y), η(y)) ∈ N (y ∈ R),

where Λ is as in (3.15) and N is the neighborhood of 0 ∈ Z = Hm+2(RN) ×
Hm+1(RN) from Theorem 3.1. By Theorem 3.1(b),

U(y) = (U1(y), U2(y))T = ξ(y) · ψ + η(y) · ζ + σ(ξ(y), η(y))

is a solution of system (3.7). Letting

u(x, y) = U1(y)(x) = ξ(y) · ϕ(x) + σ1(ξ(y), η(y))(x), (5.17)

where ϕ(x) = (ϕ1(x), . . . , ϕn(x)) and σ = (σ1, σ2), we obtain a solution of (2.1).

This solution is quasiperiodic in y, in the sense of the definition given in Section

2.2. The frequencies of the quasiperiodic solutions obtained this way cover the set

Vκ of positive measure.

It remains to show that the solution u(x, y) in (5.17) decays to 0 as |x| → ∞,

uniformly in y. This follows immediately from the fact that the set {u(·, y) : y ∈
R} is contained in a compact set—continuous image of a torus—in Hm+2(RN),

with m > N/2.
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Remark 5.5. (a) The above proof shows that if the standing hypotheses (A1),

(S1), (NR), (S2) are satisfied, and (5.11) holds, with matrices M , M̃ as in Propo-

sition 4.11, then the conclusion of Theorem 2.4 holds. The analytic dependence of

the matrix in (5.11) on s and b implies that if (5.11) holds for some s with b 6= 0

fixed, then it holds for all s, save for isolated values, and, likewise, if it holds for

some b 6= 0 (with s fixed), then it holds for all b 6= 0, save for isolated values.

(b) If the parameters (s, b) are fixed, (5.11) can be viewed as a sufficient condi-

tion (assuming also the standing hypotheses (A1), (S1), (NR), (S2)) for the con-

clusion of Theorem 2.4 to be valid. In fact, (5.11) is a condition on the functions

a3 (which appears in the definition of the matrix M) and a2, which determines

the matrix M̃ , see Remark 4.12(ii). If a2 = 0, which is equivalent to taking s = 0,

then this condition just requires that the matrix M be nonsingular. For a2 6= 0

the condition is rather implicit and hard to verify without parameters.

(c) The nondegeneracy of the Hessian D2H0(I) is called Kolmogorov’s nonde-

generacy condition. Other nondegeneracy conditions (Arnold’s isoenergetic condi-

tion, Rüssman’s condition) are also known to imply the existence of quasiperiodic

solutions for Hamiltonian systems in R2n. Theorems based on such conditions

could be used here as well, leading to different sufficient conditions in place of

(5.11). However, we stress again that because of the center manifold reduction,

only C k versions of KAM theorems are applicable in our setting, even when the

nonlinearity in the original problem (2.1) is analytic.

Proof of Theorem 2.6. Assume that a2, f1 are as in (S2), a1 is as in (S1), hypothe-

ses (A1), (NR), (A3) hold, and s, b are fixed with b 6= 0. As noted in Remark

5.5(a), the conclusion of Theorem 2.4 holds provided a3 ∈ Cm+1
b (RN) is such that

(5.11) holds. Thus, in order to prove Theorem 2.6, all we have to do is show

that the set B of all a3 ∈ Cm+1
b (RN) for which (5.11) holds is open and dense in

Cm+1
b (RN).

To stress the dependence on a3, we write the matrix in (5.11) as M(a3) +

s2bM̃ (M̃ is independent of a3, see Remark 4.12(ii)). Obviously, M(a3) depends
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continuously on a3 which gives the openness of B.

To prove the density, we first find b̃3 ∈ L2(RN) such that∫
RN
b̃3(x)ϕ2

i (x)ϕ2
j(x) dx = δij, i, j ∈ {1, . . . , n}, (5.18)

where δij is the Kronecker delta. Such b̃3 exists, due to the linear independence

of the functions ϕ2
iϕ

2
j , 1 ≤ i ≤ j ≤ n, since the linear operator

b3 7→
(∫

RN
b3ϕ

2
iϕ

2
j dx

)
1≤i≤j≤n

is easily verified to be surjective onto Rn(n+1)/2.

Next, we approximate b̃3 by b3 ∈ C∞0 (RN) so that∣∣∣∣∫
RN
b̃3(x)ϕ2

i (x)ϕ2
j(x) dx−

∫
RN
b3(x)ϕ2

i (x)ϕ2
j(x) dx

∣∣∣∣ < ε

for all 1 ≤ i, j ≤ n. If ε is sufficiently small, then the matrix M(b3) is nonsingular:

detM(b3) 6= 0, and we fix such b3.

Now, for any a3 ∈ Cm+1
b (RN) and t > 0, we have

det(M(a3 + tb3)) = det(M(a3) + tM(b3)) = tn det

(
1

t
M(a3) +M(b3)

)
6= 0

if t is sufficiently large. Thus t 7→ det(M(a3 + tb3)) is a nonconstant analytic

function, so we can find arbitrarily small t > 0 such that det(M(a3 + tb3)) 6= 0.

This proves the density of B.

Remark 5.6. Clearly, the above proof works in the radial setting—with the

space Cm+1
b (RN) replaced by Cm+1

rad (RN)—if a1 and the eigenfunctions ϕ1, . . . , ϕn

are radial.



Chapter 6

An application of a KAM-type

result using Arnold’s condition

This chapter is devoted to obtaining the existence of quasiperiodic solutions of the

Hamiltonian system corresponding to the Hamiltonian Φ (derived in Proposition

4.11), using Arnold’s isoenergetic nondegeneracy condition, which will be stated

below (see (AN)). This will be done by considering a suitable modification of

the Hamiltonian Φ for which Kolmogorov’s condition (cp. Remark 5.5(c)) holds.

Throughout this chapter we do not assume smallness of either s or b in (2.2).

The following proposition and further considerations in this chapter are based

on [14].

Proposition 6.1. Let Ω ⊂ Rn be a bounded domain. Let G : Tn × Ω → R be a

Hamiltonian of class CK of the form

G(θ, I) = G0(I) +G1(θ, I),

which satisfies |G(θ, I)| < 1/4 for all (θ, I) ∈ Tn × Ω. Let G (θ, I) := G(θ, I) +

(G(θ, I))2. Write

G (θ, I) = G 0(I) + G 1(θ, I),

67
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where

G 0(I) = G0(I) + (G0(I))2,

G 1(θ, I) = G (θ, I)− G 0(I).

Assume G satisfies the hypotheses of Theorem 5.1, with G 0 and G 1 in lieu of H0

and H1, respectively, and |G (θ, I)| < 1/8 for all (θ, I) ∈ Tn×Ω. Let ω∗ = ∇G 0 be

the frequency map corresponding to G 0, T be the diffeomorphism from Theorem

5.1 (applied to G ), and I∗ ∈ Ω be such that ω∗(I∗) ∈ Vκ, with Vκ the set defined in

(5.5). Then there exists a constant c such that the manifold T
(
Tn ×

{
1

1+2c
ω∗(I∗)

})
is invariant under the flow of

θ̇ = ∇IG(θ, I),

İ = −∇θG(θ, I),
(6.1)

and the solution of (6.1) with the initial condition T
(
θ0,

1
1+2c

ω∗(I∗)
)
, θ0 ∈ Tn, is

given by

T

(
θ0 +

1

1 + 2c
ω∗(I∗)t,

1

1 + 2c
ω∗(I∗)

)
, (t ∈ R). (6.2)

Note that since ω∗(I∗) ∈ Vκ, the solution in (6.2) is quasiperiodic, with fre-

quency vector 1
1+2c

ω∗(I∗). Thus, the proposition implies that the problem of

finding quasiperiodic solutions of the Hamiltonian system corresponding to G can

be reduced to finding such solutions for the system corresponding to G , as long

as G satisfies the hypotheses of Theorem 5.1. Of course, this result is of interest

when the estimate (5.6) does not hold for the Hamiltonian G, in which case we

will show that, under some assumptions on G (see (AN) below), the Hamiltonian

G satisfies (5.6).

Remark 6.2. Suppose I∗, J∗ ∈ Ω are such that ω∗(I∗), ω∗(J∗) ∈ Vκ, and

denote by c(I∗) and c(J∗) the constant from Proposition 6.1 applied to I∗ and J∗,

respectively. Since the map T from Theorem 5.1 is a diffeomorphism, it is easy to

see that the corresponding solutions of (6.1) given by (6.2) are distinct provided

1

1 + 2c(I∗)
ω∗(I∗) 6= 1

1 + 2c(J∗)
ω∗(J∗),
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in particular, this condition holds if ω∗(I∗) and ω∗(J∗) are not multiples of each

other.

Proof of Proposition 6.1. Since the manifold T (Tn × {ω∗(I∗)}) is invariant under

the Hamiltonian vector field of G , it is contained in the level set (relative to G )

Mε := {(θ, I) ∈ Tn×Ω : G (θ, I) = ε}, for some ε ∈ (−1/8, 1/8). This set coincides

with the ε∗-level set of G for ε∗ := (1/2)(−1 +
√

1 + 4ε), as found by taking the

inverse of the map

t ∈

(√
2− 2

4
,

√
6− 2

4

)
7→ t2 + t ∈ (−1/8, 1/8).

The gradients of G and G are related as follows:

∇G (θ, I) = ∇(G(θ, I) + (G(θ, I))2) = (1 + 2G(θ, I))∇G(θ, I); (6.3)

in particular, when ∇G and ∇G are restricted to Mε, one has

∇G (θ, I)

∣∣∣∣
Mε

= (1 + 2ε∗)∇G(θ, I)

∣∣∣∣
Mε

. (6.4)

It follows that, up to a multiplicative constant, the Hamiltonian vector fields of

G and G coincide when restricted to Mε.

By Theorem 5.1, the solution of

θ̇ = ∇IG (θ, I),

İ = −∇θG (θ, I),
(6.5)

with the initial condition T (θ0, ω
∗(I∗)), is given by T (θ0 + ω∗(I∗)t, ω∗(I)). Us-

ing (6.4), it is easy to see that the solution of (6.1) with the initial condition

T (θ0,
1

1+2c
ω∗(I∗)) is given by (6.2), with c = ε∗. This in turn implies that the

manifold T
(
Tn ×

{
1

1+2c
ω∗(I∗)

})
is invariant under the flow of (6.1).

Remark. The hypotheses |G(θ, I)| < 1/4 for all (θ, I) ∈ Tn×Ω is only relevant to

ensure 1 + 2G(θ, I) 6= 0, and it will clearly hold in our setting by our choice of Ω

(cp. (5.9)). Alternatively, one could multiply the term (G(θ, I))2 (in the definition

of G ) by (4 sup(θ,I)∈Tn×Ω G(θ, I))−1. The sole role of the hypothesis |G (θ, I)| < 1/8

for all (θ, I) ∈ Tn × Ω is to ensure the invertibility of the map t 7→ t2 + t.
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Let Φ, Φ0 and Φ1 be as in Proposition 4.11. For (θ, I) ∈ Tn ×Ω, with Ω as in

(5.9), let

G0(I) := ω · I + Φ0(I)

G1(θ, I) := Φ(θ, I)−G0(I) = Φ1(θ, I),
(6.6)

and define the matrix

M(I) =


∂2G0

∂I2
(I)

∂G0

∂I
(I)T

∂G0

∂I
(I) 0

 (6.7)

(we consider
∂G0

∂I
as a row vector). We make the following assumption on M:

(AN) The (n+ 1)× (n+ 1) matrix M(0) is nonsingular.

Hypothesis (AN) is called Arnold’s nondegeneracy condition, or the isoenergetic

nondegeneracy condition.

Define the Hamiltonian

G (θ, I) = Φ(θ, I) + (Φ(θ, I))2. (6.8)

This Hamiltonian can be written in the form (5.1) by setting

H0(I) = G0(I) + (G0(I))2

H1(θ, I) = G1(θ, I) + 2G0(I)G1(θ, I) + (G1(θ, I))2.
(6.9)

We can now state the main result of this chapter:

Theorem 6.3. Assume hypotheses (A1), (NR), (S1), (S2), and (AN) are satis-

fied, and let s ∈ R, b ∈ R\{0} be arbitrary. Then there exists a solution u(x, y) of

equation (2.1) (with f as in (2.2)) such that u(x, y)→ 0 as |x| → ∞ uniformly in

y, and u(x, y) is quasiperiodic in y. In fact, there is an uncountable family of such

quasiperiodic solutions, their frequency vectors forming an uncountable subset of

Rn (n is as in (A1)(b)).
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Remark 6.4. If one is interested in solutions which are radially symmetric in x,

one can also consider the version of hypothesis (A1) adapted to this setting, as

mentioned in Remark 2.1.

Proof of Theorem 6.3. If
∂2Φ0

∂I2
(0) is nonsingular, then the result is a direct con-

sequence of Theorem 2.4 and Remark 5.5(b), since (5.11) will hold for all I ∈ Ω

if q > 0 (cp. (5.9)) is sufficiently small.

Now we assume
∂2Φ0

∂I2
(0) =

∂2G0

∂I2
(0) is singular. For G as in (6.8) and H0, H1

as in (6.9), we will verify the hypotheses of Theorem 5.1. We start by proving the

existence of R > 0 such that (5.6) holds. Note first that

∂2H0

∂I2
(I) = (1 + 2G0(I))

∂2G0

∂I2
(I) + 2

∂G0

∂I
(I)⊗ ∂G0

∂I
(I),

where, for vectors v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn, v ⊗ w is the exterior

product of v and w, i.e., (v ⊗ w)ij = viwj.

Also recall the following determinant identity for block matrices: if A is a n×n
matrix and v, w ∈ Rn are (column) vectors, then∣∣∣∣∣ A v

wT 0

∣∣∣∣∣ = detA− det(A+ v ⊗ w). (6.10)

Applying this identity to the matrix M(0), and using that
∂2G0

∂I2
(0) is singular,

detM(0) = − det

(
∂2G0

∂I2
(0) +

∂G0

∂I
(0)⊗ ∂G0

∂I
(0)

)
.

Recalling that G0(0) = 0, we obtain

det
∂2H0

∂I2
(0) = det

(
∂2G0

∂I2
(0) + 2

∂G0

∂I
(0)⊗ ∂G0

∂I
(0)

)
= −2 detM(0) 6= 0,

where the last identity is obtained by applying (6.10) with 2w in place of w.

Thus, there exists R > 0 such that (5.6) holds for H0 if q > 0 is sufficiently

small. The verification of (5.8) can be carried out as in Lemma 5.2, using the

following remark. The map Φ1 (as in Proposition 4.11) is a CK map of order



72

O(|(ξ̄, η̄)|2kB+2) as (ξ̄, η̄) → (0, 0), so in the variables (θ, I), Φ1 is a CK map on

Tn × Ωq of order O(|I|kB+1) uniformly in θ ∈ Tn. By (6.6) and (6.9), clearly the

same applies for H1(θ, I).

Taking q > 0 smaller if necessary, one has |Φ(θ, I)| < 1/4 and |G (θ, I)| < 1/8

for all (θ, I) ∈ Tn × Ω, so all hypotheses of Proposition 6.1 are satisfied (with

G = Φ). In addition, the set Vκ (defined in (5.5)) has positive Lebesgue measure,

so there exists an uncountable set Wκ ⊂ Vκ such that no two elements of Wκ are

multiples of each other. Let ΩW be the preimage of Wκ via the frequency map

ω∗(I) = ∇H0(I). For each I∗ ∈ ΩW we apply Proposition 6.1 to find a quasi-

periodic solution of the Hamiltonian system corresponding to the Hamiltonian

Φ with frequency vector 1
1+2c(I∗)

ω∗(I∗), where we denote c = c(I∗) the constant

in Proposition 6.1. Since the map I ∈ ΩW 7→ 1
1+2c(I∗)

ω∗(I∗) ∈ Rn is injective,

the corresponding solutions not only are distinct (cp. Remark 6.2), but their fre-

quency vectors are distinct as well. The rest of the proof is the same as the proof

of Theorem 2.4, so we omit the details.



Chapter 7

Proof of Theorem 2.8

In this chapter we prove the existence of quasiperiodic solutions of (2.3), that is,

of the following equation:

∆u+ uyy + a1(r; s)u+ a2(r; s)u2 + u3g(r, u; s) r ≥ 0, y ∈ R, (2.3)

where a1 and a2 are sufficiently smooth, radially symmetric functions, s ∈ [0, δ] is

a parameter, with δ > 0 sufficiently small, and g is a sufficiently smooth function.

Our purpose is to find the existence of y-quasiperiodic solutions of (2.3) using the

results from Chapter 6. Throughout this chapter we assume hypotheses (A1’),

(S1’), (S2’), (NR’) (with K, m as in (2.5) and n = 2) and (A4) are satisfied.

In order to prove Theorem 2.8, we will show that hypothesis (A4) implies

that hypothesis (AN) from Chapter 6 is satisfied by the reduced Hamiltonian

corresponding to (2.3) for all s ∈ (0, δ) if δ > 0 is sufficiently small. Once this has

been established, Theorem 2.8 will be a direct consequence of Theorem 6.3.

We start by noting that the construction from Chapters 3 and 4 applies to

equation (2.3) as well, with some minor changes to account for the role of the

parameter s, which is different from the role of s in (2.2). We discuss those

changes here.

The first difference from the foregoing construction is how the smoothness

of the reduction function on the parameter s is obtained. Let m > N/2, X =

73



74

Hm+1
rad (RN) × Hm

rad(RN), and Z = Hm+2
rad (RN) × Hm+1

rad (RN). Denote ϕj(·; s) the

eigenfunction ofA1(s) := −∆−a1(r; s) (acting on L2
rad(RN) with domainH2

rad(RN))

associated to µj(s), j ∈ {1, 2}, normalized in the L2-norm, and such that ϕj(0; s) >

0. The center space Xc is now

Xc(s) := {(h, h̃)T : h, h̃ ∈ span{ϕ1(·; s), ϕ2(·; s)}}.

The abstract form of (2.3) is given by

du1

dy
= u2,

du2

dy
= A1(s)u1 − f̃(u1; s).

(7.1)

We rewrite this further as

du

dy
= A(s)u+R(u; s), (7.2)

where u = (u1, u2),

A(s)(u1, u2) = (u2, A1(s)u1)T ,

R(u1, u2; s) = (0, f̃(u1; s))T .
(7.3)

Here, for each s ∈ (−δ, δ), A(s) is considered as an operator on X with domain

D(A(s)) = Z, and R as a CK+1-map from Z × (−δ, δ) to Z.

Because of the s-dependence in the linear operator A(s), we cannot refer to

the construction from Chapter 3 for the CK+1-regularity in s—in Theorem 3.1,

parameters appear only in the nonlinearity R—and we need to prove the existence

of σ differently. We derive it from standard center manifold theorems using the

fact that A(s) depends on s in its bounded part only.

Write equation (7.2) in the form

du

dy
= A0u+ R̄(u; s), (7.4)

where A0 := A(0) and R̄(u; s) = (A(s) − A0)u + R(u; s). Due to (S1’), (S2’),

R̄ : Z × (−δ, δ) → Z is of class CK+1, just like R. Multiplying R̄ by a suitable
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cutoff function on the Hilbert space Z×R, one finds a CK+1
b -map R̃ : Z×R→ Z

having a sufficiently small (global) Lipschitz constant and satisfying R̃ ≡ R̄ on a

small neighborhood of (0, 0) ∈ Z×R, say, on N ×(−δ0, δ0) (N is a neighborhood

of 0 ∈ Z and δ0 ∈ (0, δ)). One then applies the global center manifold theorem

to equation (7.4) with R̄ replaced by R̃, augmented by the “stationary-parameter

equation” ds/dy = 0 (cp. [35, 70]). This yields a CK+1
b -map σ̃ : Xc(0) × R 7→ Z

taking values in Ph(0)Z, such that for each s ∈ R

W c(s) := {w + σ̃(w; s) : w ∈ Xc(0)} (7.5)

is the global center manifold for (7.4). This means, by definition, that W c(s) is

the set of all points u0 ∈ Z with the following property: there is a solution u(y)

of (7.4) defined for all y ∈ R such that u(0) = u0 and

sup
y∈R
‖u(y)‖Ze−ε|y| <∞ (ε > 0).

In particular, since u ≡ 0 is a solution of (7.4) due to the relation R̃(0, s) =

R̄(0, s) = 0, one has σ̃(0, s) = 0 for all s ∈ (−δ0, δ0). The applicability of [35, 70]

to (7.4) is verified in the same way as in Section 3.2.

If s ≥ 0 and it is small enough, W c(s) can be written as the graph of a map

σ̄(·; s) : Xc(s) 7→ Ph(s)Z. To find σ̄, for w ∈ Xc(0), write w + σ̃(w; s) as

w + σ̃(w; s) = Pc(s)(w + σ̃(w; s)) + Ph(s)(w + σ̃(w; s)). (7.6)

Given any v ∈ Xc(s) = Pc(s)Z, we want to solve the equation

Pc(s)w + Pc(s)σ̃(w; s) = v (7.7)

for w ∈ Xc(0). To that goal, define, for any s ∈ [0, δ0),

Q(s) := Pc(s)Pc(0) + Ph(s)Ph(0) ∈ L (X) (7.8)

and note that Q(0) = IX—the identity on X, and Q(s)w = Pc(s)w for w ∈ Xc(0)

(in particular, Q(s) takes Xc(0) to Xc(s)). As mentioned above, Pc(s) ∈ L (X)
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is of class CK+1 in s ∈ (−δ0, δ0), hence Q(s) ∈ L (X) is such as well. It follows

that for sufficiently small s ≥ 0 (say, for s ∈ [0, δ1), with some δ1 ∈ (0, δ0]), the

inverse Q−1(s) ∈ L (X) exists and is of class CK+1 in s. For such s and for any

v ∈ Xc(s), equation (3.2) can be equivalently written as

w = Q−1(s)Pc(s)v −Q−1(s)Pc(s)Ph(0)σ̃(w; s) (7.9)

(we have used the relationsQ(s)w = Pc(s)w, Pc(s)v = v, and σ̃(w; s) = Ph(0)σ̃(w; s)).

Since σ̃ is of class CK+1
b and Pc(0)Ph(0) = 0, we observe that if δ2 ∈ (0, δ1) is

small enough, then the map on the right-hand side of (7.9) is a 1/2-contraction in

w ∈ Xc(0)—assuming the norm from X on Xc(0)—for all s ∈ [0, δ2) and v ∈ X
(not just v ∈ Xc(s)). The uniform contraction principle implies that equation

(7.9) has unique solution w ∈ Xc(0) given by

w = Υ(v, s), (7.10)

where Υ : X × (−δ2, δ2)→ Xc(0) is a CK+1 map. We now define σ̄ by

σ̄(v; s) := Ph(s)(Υ(v, s) + σ̃(Υ(v, s); s)). (7.11)

Clearly, σ̄ : X × [0, δ2)→ Z is of class CK+1 and, by (7.6),

W c(s) = {w + σ̃(w; s) : w ∈ Xc(0)} = {v + σ̄(v; s) : v ∈ Xc(s)}. (7.12)

To conclude, define σ : R4 × [0, δ2)→ Z by

σ(ξ, η; s) := σ̄(ξ · ψ(s) + η · ζ(s); s) ((ξ, η) ∈ R4, s ∈ [0, δ2)), (7.13)

with ψ(s), ζ(s) given by ψ(s) = (ψ1(s), ψ2(s)), ζ(s) = (ζ1(s), ζ2(s)), for

ψj(·; s) = (ϕj(·; s), 0)T , ζj(·; s) = (0, ϕj(·; s))T . (7.14)

Since the functions ϕj(·; s) ∈ Hm+2(RN) are of class CK+1 in s, σ is of class CK+1.

It is straightforward to verify the statements of Theorem 3.1 as in Section 3.2.

The rest of the construction follows as in Chapter 4, only without distinguish-

ing terms which are small in the parameters s or b from (2.2). (Note that the role
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of the parameter s in (2.2) is different from the role of s in (2.3).) After the Dar-

boux transformation (cp. Lemma 4.6), the Hamiltonian of the reduced equation

takes the form

Φ(ξ′, η′; s) =
1

2

2∑
j=1

(−µj(ξ′j)2 + (η′j)
2) +

1

3

∫
RN
a2(ξ′ · ϕ)3dx+

+ Φ4(ξ′, η′; s) + Φ′′(ξ′, η′; s), (7.15)

where µj = µj(s), ϕj = ϕj(·; s) for j ∈ {1, 2}, Φ4 is a homogeneous polynomial in

(ξ′, η′) of degree 4 and Φ′′ is of class CK on (ξ′, η′), of order O(|(ξ′, η′)|5) uniformly

for s ∈ [0, δ].

Lastly, Proposition 4.11 is modified as follows:

Proposition 7.1. Let kB be an integer with 2 ≤ kB ≤ K/2 − 1, where K is

as in (2.5), and let Φ = Φ(ξ′, η′; s) be the Hamiltonian in (7.15), that is, the

Hamiltonian of the reduced equation corresponding to (2.3), written in Darboux

coordinates as in Lemma 4.6. Let ω = ω(s) be the vector defined in (NR’). Then

for each s ∈ (0, δ] there is a smooth map φ̄ : V → R4 defined on a neighborhood

V of (0, 0) ∈ R4 such that the following statements are valid:

(a) φ̄ is a diffeomorphism onto its image, it is a canonical transformation, and

φ̄(ξ̄, η̄)− (ξ̄, η̄) = O(|(ξ̄, η̄)|3) as (ξ̄, η̄)→ (0, 0).

(b) Making the (canonical) change of coordinates

(ξ′, η′) = φ̄(ξ̄, η̄), (ξ̄, η̄) := (ξ̄1, ξ̄2, η̄1, η̄2), (7.16)

let Φ(ξ̄, η̄; s) stand for the transformed Hamiltonian (that is, Φ(ξ̄, η̄; s) is

actually the function Φ(φ̄(ξ̄, η̄); s)). Then, setting Ij = (ξ̄2
j + η̄2

j )/2 and

I = (I1, I2), we have

Φ(ξ̄, η̄) = ω · I + Φ0(I) + Φ1(ξ̄, η̄), (7.17)

where Φ0 is a polynomial in I of degree at most kB, and Φ1 is of class CK

and of order O(|(ξ̄, η̄)|2kB+2) as (ξ̄, η̄)→ (0, 0).
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(c) Φ0 is given by

Φ0(I) =
1

2
I ·MI + P̂ (I), (7.18)

where P̂ (I) is a polynomial in I of degree at most kB with no constant,

linear, or quadratic terms, and M is a symmetric 2× 2 matrix with entries

depending continuously on s for all s ∈ (0, δ).

Our purpose is to understand the asymptotic behavior of the components of

the matrix M (in (7.18)) as s → 0 or, equivalently, as ω2 → 0, the equivalence

being a direct consequence of (A1’)(b) and Remark 2.3. In order to do this, we

need to study the asymptotic behavior of the terms of degree 4 introduced by the

Birkhoff normal form computation, more precisely, the terms introduced in the

first step of the algorithm (see (7.23) below).

We begin with some preliminary computations. Let Φ(ξ′, η′; s) be the Hamil-

tonian from (7.15), and denote by Φ2, Φ3 and Φ4 all the terms in Φ of degree 2,

3 and 4, respectively, in (ξ′, η′).

Remark 7.2. Note that the coefficients of Φj(ξ
′, η′), j ∈ {2, 3, 4}, are uniformly

bounded for s ∈ [0, δ].

Consider the change of variables

ξ′j =
1
√
ωj
ξj, η′j =

√
ωj ηj,

for j ∈ {1, 2}. Here ω is the vector defined in (NR’). (Of course, (ξ, η) no longer

represent the original coordinates on the center manifold.) The quadratic part of

Φ becomes

Φ2(ξ, η; s) :=
1

2

2∑
j=1

ωj(ξ
2
j + η2

j ).

Remark. In an abuse of notation, we denote by Φ2(ξ, η; s) the function Φ2(ξ(ξ′),

η(η′); s), and similarly for other functions.

We now write the cubic terms of Φ, that is,

Φ3(ξ, η; s) =

∫
RN

a2

3
(ξ′ · ϕ)3 dx, (7.19)
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explicitly in terms of (ξ, η):

(ξ′ · ϕ)3 =
2∑

j1,j2,j3=1

ξ′j1ξ
′
j2
ξ′j3ϕj1ϕj2ϕj3 =

2∑
j1,j2,j3=1

ξj1ξj2ξj3
(ωj1ωj2ωj3)

1/2
ϕj1ϕj2ϕj3 ,

so

Φ3(ξ, η; s) =
1

3

2∑
j1,j2,j3=1

ξj1ξj2ξj3
(ωj1ωj2ωj3)

1/2

∫
RN
a2ϕj1ϕj2ϕj3dx.

(Even though Φ3 is independent of η, for consistency we write it as a function of

(ξ, η) anyway.) For j, k, ` ∈ {1, 2}, set

Θ3(j, k, `; s) =
1

3(ωjωkω`)1/2

∫
RN
a2ϕjϕkϕ`dx, (7.20)

so

Φ3(ξ, η; s) =
2∑

j,k,`=1

Θ3(j, k, `; s)ξjξkξ`, (7.21)

Lemma 7.3. Let j, k, ` ∈ {1, 2}. As ω2 → 0 (that is, as s→ 0),

Θ3(j, k, `; s) = O(ω
−(j+k+`−3)/2
2 ).

In particular,

Θ3(2, 2, 2; s) = O
(
ω
−3/2
2

)
,

and if (j, k, `) 6= (2, 2, 2), then

Θ3(j, k, `; s) = O
(
ω−1

2

)
.

Proof. By the continuity of the maps s ∈ [0, δ] 7→ a2(·; s) ∈ Cm+1
b and s ∈ [0, δ] 7→

ϕj(·; s) ∈ Lprad(RN) for 1 ≤ p ≤ ∞ and j = 1, 2, it follows that the integral

on the right hand side of (7.20) is bounded. Since the negative eigenvalues of

−∆ − a1(r; s) are isolated, µ1(s) stays away from 0 for all s ∈ [0, δ], therefore,

there exists a positive constant C such that ω1(s) ≥ C > 0 for all s ∈ [0, δ], and

our assertions follow.

Using a similar reasoning, combined with Remark 7.2, one can prove the fol-

lowing result:
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Corollary 7.4. The coefficients of the polynomial Φ4(ξ, η; s) are of order O(ω−2
2 )

as s→ 0.

Recall that the first transformation of the Birkhoff normal form algorithm

eliminates all terms of degree 3 in (ξ, η). Let s > 0, and let χ3 = χ3(ξ, η; s) be the

unique solution of

{Φ2, χ3} = −Φ3 (7.22)

(this is the analogue of (4.25) for the Hamiltonian Φ). If ν3 is the time-1 map

generated by χ3, (4.26) reads

Φ ◦ ν3 = Φ2 + Φ4 +
1

2
{Φ3, χ3}+ h.o.t., (7.23)

where “h.o.t.” stands for terms of order O(|(ξ, η)|5).

We now consider the change of coordinates (4.27). Denote by Φ2(α, β) the

function Φ2(ξ(α, β), η(α, β)), and similarly for Φ, Φ3, and others. These functions,

as well as ω1 and ω2, depend on s, but for simplicity we suppress the dependence

in the notation.

In the following lemma we study the Hamiltonian resulting from the first

step of the Birkhoff normal form algorithm. Recall that in the second step of

the computation all nonresonant terms (see the definition in the paragraph after

(4.29)) of degree 4 are eliminated, while resonant terms remain unchanged. We

are primarily interested in the asymptotic behavior (as s → 0) of the resonant

terms.

Lemma 7.5. For each s ∈ (0, δ],

Φ ◦ ν3 = Φ2(α, β) +
5

12ω4
2

(∫
RN
a2(x; s)ϕ3

2(x; s)dx

)2

α2
2β

2
2 + Φ̃(α, β) +

+ nonresonant terms + h.o.t., (7.24)

where Φ̃ is a homogeneous polynomial in (α, β) of degree 4, with coefficients of

order O(ω
−7/2
2 ) as ω2 → 0 (that is, as s → 0), and “h.o.t.” stands for terms of

order O(|(α, β)|5).
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Proof. Let χ3 be the unique solution of (7.22). If ν3 is the time-1 map generated

by χ3, then (7.23) holds, where the coefficients of Φ4 are of order O(ω−2
2 ) as

ω2 → 0 by Corollary 7.4, and “h.o.t.” stands for terms of order O(|(ξ̄, η̄)|5) as

(ξ, η)→ (0, 0).

Our interest will be focused on the term (1/2){Φ3, χ3} in (7.23). Using Lemma

7.3 and (7.21), we can write

Φ3(ξ, η) = Θ3(2, 2, 2)ξ3
2 + Φ′3 =: Φ̄3 + Φ′3, (7.25)

where Φ̄3(ξ, η) = Θ3(2, 2, 2)ξ3
2 , and Φ′3 is a homogeneous polynomial in (ξ, η)

of degree 3, whose coefficients are of order O(ω−1
2 ) as ω2 → 0 by Lemma 7.3.

Equation (7.22) can be rewritten as

{Φ2, χ3} = −Φ̄3 − Φ′3.

We can find unique χ̄3 and χ′3, both homogeneous polynomials in (ξ, η) of degree

3, such that

{Φ2, χ̄3} = −Φ̄3, (7.26)

{Φ2, χ
′
3} = −Φ′3, (7.27)

so

χ3(ξ, η) = χ̄3(ξ, η) + χ′3(ξ, η) (7.28)

is the unique solution of (7.22).

Recall that if J = (j1, j2) ∈ N2 is a multiindex, we write αJ = αj11 α
j2
2 . When

the homological equation {Φ2, χ3} = ψ is expressed in terms of the monomials

αJβL, with

J, L ∈ N2, |J |+ |L| = 3, (7.29)

the operator {Φ2, · } has a diagonalizable matrix, which is similar to diag(iω · (L−
J))|J |+|L|=3. The transition matrix from the basis {ξJηL : |J | + |L| = 3} to the

basis {αJβL : |J | + |L| = 3} is independent of ω1, ω2, thus, inverting the matrix

of the linear operator {Φ2; · } introduces a singularity of order at most O(ω−1
2 ).
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These remarks, together with (7.27), imply that the coefficients of the polynomial

χ′3 are of order O(ω−2
2 ) as s→ 0.

In the coordinates (α, β) defined in (4.27),

Φ̄3(α, β) =
Θ3(2, 2, 2)√

23
(α2 − iβ2)3

=
Θ3(2, 2, 2)

2
√

2
(α3

2 − 3iα2
2β2 − 3α2β

2
2 + iβ3

2). (7.30)

We use (4.28) to find χ̄3 —by dividing each term αJβL in Φ̄3 by iω · (L− J),

with J = (j1, j2), L = (`1, `2) as in (7.29). Note that none of the terms on the

right hand side of (7.30) involves α1 or β1, so j1 = `1 = 0, and the condition

|J |+ |L| = 3 becomes j2 + `2 = 3, hence, iω · (L− J) = iω2(`2 − j2). Thus,

χ̄3(α, β) =
Θ3(2, 2, 2)

2
√

2iω2

(
−1

3
α3

2 + 3iα2
2β2 − 3α2β

2
2 +

i

3
β3

2

)
.

In particular, by Lemma 7.5, χ̄3 is a homogeneous polynomial in (α, β) of degree

3 whose coefficients are of order O(ω
−5/2
2 ) as ω2 → 0.

Using the formulas for Φ̄3 and χ̄3, it follows that

{Φ̄3, χ̄3} =
∂Φ̄3

∂α2

∂χ̄3

∂β2

− ∂χ̄3

∂α2

∂Φ̄3

∂β2

=
Θ3(2, 2, 2)2

8iω2

[
(3α2

2 − 6iα2β2 − 3β2
2)(3iα2

2 − 6α2β2 + iβ2
2)−

(−α2
2 + 6iα2β2 − 3β2

2)(−3iα2
2 − 6α2β2 + 3iβ2

2)
]

=
Θ3(2, 2, 2)2

8iω2

[3i+ 36i− 9i− (−3i− 36i+ 9i)]α2
2β

2
2 +

+ nonresonant terms

=
15Θ3(2, 2, 2)2

2ω2

α2
2β

2
2 + nonresonant terms

=
15

18ω4
2

(∫
RN
a2(x)ϕ3

2(x)dx

)2

α2
2β

2
2 + nonresonant terms,
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where we have used (7.20) and the fact that the resonant terms are of the form

(4.31). Using (7.25) and (7.28),

1

2
{Φ3, χ3} =

1

2

(
{Φ̄3, χ̄3}+ {Φ̄3, χ

′
3}+ {Φ′3, χ̄3}+ {Φ′3, χ′3}

)
.

From our previous observations, we can easily find the asymptotic behavior of

the last three terms on the right hand side: the coefficients of the polynomials

{Φ̄3, χ
′
3} and {Φ′3, χ̄3} are of order O(ω

−7/2
2 ) as ω2 → 0, while the coefficients of

{Φ′3, χ′3} are of order O(ω−3
2 ). Setting

Φ̃ =
1

2

(
{Φ̄3, χ

′
3}+ {Φ′3, χ̄3}+ {Φ′3, χ′3}

)
+ Φ4,

all statements of the lemma are satisfied and the proof is complete.

As in (6.6), define

G0(I; s) := ω(s) · I + Φ0(I; s)

G1(θ, I; s) := Φ(θ, I; s)−G0(I; s) = Φ1(θ, I; s),
(7.31)

where Φ, Φ0 and Φ1 are as in Proposition 7.1. Using the conclusion of Lemma

7.5, in the next lemma we study the determinant of the matrix

M(s)(I) =


∂2G0

∂I2
(I; s)

∂G0

∂I
(I; s)T

∂G0

∂I
(I; s) 0

 (7.32)

Lemma 7.6. Let M = (mij), i, j = 1, 2, be the matrix from (7.18), and let

M(s)(I) be the matrix in (7.32), defined for I ∈ Ω, where Ω = Ωq is as in (5.9),

with q > 0 sufficiently small. If δ > 0 is sufficiently small, then

detM(s)(0) =

∣∣∣∣∣∣∣∣
m11 m12 ω1

m21 m22 ω2

ω1 ω2 0

∣∣∣∣∣∣∣∣ 6= 0

for all s ∈ (0, δ).
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Proof. Note that the matrix M in (7.18) is determined by the first two steps of

the Birkhoff normal form algorithm, since the third and subsequent steps do not

alter terms of degree less or equal than 4 (in (ξ′, η′)). This is straightforward from

remarks after (4.22). If G0 is as in (7.31), it is easy to see that

∂G0

∂I

∣∣∣∣
I=0

= (ω1, ω2),
∂2G0

∂I2

∣∣∣∣
I=0

= M,

where I = (I1, I2) is as in statement (b) of Proposition 7.1. Note that

1

2
I ·MI =

1

2

(
m11I

2
1 + (m12 +m21)I1I2 +m22I

2
2

)
.

Also, m12 = m21, and if (αj, βj), j ∈ {1, 2}, are as in (4.27), then

αjβj = i(ξ2
j + η2

j )/2 = iIj.

The asymptotic behavior of the coefficient m22 is obtained from Lemma 7.5. More

precisely, a term of the form α2
2β

2
2 is present in (7.24) either in the second term

of the right hand side (and the coefficient is explicitly known) or in Φ̃(α, β), in

which case its coefficient is of order O(ω
−7/2
2 ) by Lemma 7.5. Thus, m22 can be

written as

m22 = − 5

12ω4
2

(∫
RN
a2(x; s)ϕ3

2(x; s)dx

)2

+ m̃22, (7.33)

where m̃22 is of order O(ω
−7/2
2 ) as ω2 → 0. The integral in (7.33) depends con-

tinuously on s, thus, by hypothesis (A4), it is nonzero for all s ∈ [0, δ] if δ > 0

is sufficiently small. Since the terms m11I
2
1 and 2m12I1I2 are contained in Φ̃ in

(7.24), Lemma 7.5 implies that m11 and m12 are of order O(ω
−7/2
2 ) as ω2 → 0.

Expanding the determinant detM(s)(0) along the last row,

detM(s)(0) = ω1(m12ω2 −m22ω1)− ω2(m11ω2 −m21ω1)

= −m22ω
2
1 + ω1ω2(m12 +m21)−m11ω

2
2.

Since m12 = m21, m11 and m12 are O(ω
−7/2
2 ) as s→ 0, and ω1(s) ≥ C > 0 for all

s ∈ (0, δ), using (7.33) we find

detM(s)(0) = −ω2
1m22 +O(ω

−7/2
2 ) = ψ(s)ω−4

2 +O(ω
−7/2
2 ),
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where ψ(s) is a positive function such that, for some positive constant C > 0,

ψ(s) ≥ C > 0 for all s > 0 sufficiently small. It follows that detM(s)(0) → ∞
as s → 0, so detM(·)(0) 6≡ 0. Note that M(s) depends continuously on s

by Proposition 7.1(c) and Remark 2.3, thus, if δ > 0 is sufficiently small, then

detM(s)(0) 6= 0 for all s ∈ (0, δ).

Proof of Theorem 2.8. By Lemma 7.6, if δ > 0 is sufficiently small, then for all

s∗ ∈ (0, δ) the matrix M(s∗)(I) is nonsingular for all I ∈ Ωq as long as q > 0 is

sufficiently small. It follows that the Hamiltonian G(θ, I) = G0(I; s∗)+G1(θ, I; s∗)

satisfies all the assumptions of Theorem 6.3 in the radial setting (in the sense of

Remark 6.4), which gives the desired conclusion.
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[17] Á. Calsina, X. Mora, and J. Solà-Morales. The dynamical approach to elliptic

problems in cylindrical domains, and a study of their parabolic singular limit.

J. Differential Equations, 102(2):244–304, 1993.

[18] W. Craig and C.E. Wayne. Newton’s method and periodic solutions of non-

linear wave equations. Comm. Pure Appl. Math., 46(11):1409–1498, 1993.

[19] E. Dancer. New solutions of equations on Rn. Annali della Scuola Normale

Superiore di Pisa, Classe di Scienze, 30:535–563, 2001.

[20] R. de la Llave. A tutorial on KAM theory. In Smooth ergodic theory and its

applications (Seattle, WA, 1999), volume 69 of Proc. Sympos. Pure Math.,

pages 175–292. Amer. Math. Soc., Providence, RI, 2001.

[21] R. de la Llave. A smooth center manifold theorem which applies to some ill-

posed partial differential equations with unbounded nonlinearities. J. Dynam.

Differential Equations, 21(3):371–415, 2009.

[22] R. de la Llave and Y. Sire. An a posteriori KAM theory for whiskered

tori in Hamiltonian partial differential equations which applies to ill-posed

equations. Preprint.

[23] M. del Pino, M. Kowalczyk, F. Pacard, and J. Wei. The Toda system and

multiple-end solutions of autonomous planar elliptic problems. Adv. Math.,

224:1462–1516, 2010.

[24] M. del Pino, M. Kowalczyk, F. Pacard, and J. Wei, Multiple-end solutions

to the Allen-Cahn equation in R2. J. Funct. Anal. 258:458–503, 2010.

[25] H.S. Dumas. The KAM story. World Scientific Publishing Co. Pte. Ltd.,

Hackensack, NJ, 2014. A friendly introduction to the content, history, and

significance of classical Kolmogorov-Arnold-Moser theory.



89

[26] A. Farina. Symmetry for solutions of semilinear elliptic equations in RN and

related conjectures. Ricerche Mat., 48:129–154, 1999. Papers in memory of

Ennio De Giorgi (Italian).

[27] A. Farina and E. Valdinoci Some results on minimizers and stable solutions of

a variational problem. Ergodic Theory Dynam. Systems, 32:1302-1312, 2012.

[28] B. Fiedler and A. Scheel. Spatio-temporal dynamics of reaction-diffusion

patterns. In Trends in nonlinear analysis, pages 23–152. Springer, Berlin,

2003.

[29] E. Fontich, R. de la Llave, and Y. Sire. Construction of invariant whiskered

tori by a parameterization method. Part I: Maps and flows in finite dimen-

sions. Journal of Differential Equations, 246:3136–3213, 2009.

[30] J. Geng and J. You. A KAM theorem for Hamiltonian partial differential

equations in higher dimensional spaces. Comm. Math. Phys., 262:343–372,

2006.

[31] B. Gidas, W.-M. Ni, and L. Nirenberg. Symmetry of positive solutions of

nonlinear elliptic equations in Rn. In Mathematical Analysis and Applications,

part A. Academic Press, New York, 1981.
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Appendix A

Hypotheses for the center

manifold theorem

In this appendix we complete the verification of hypotheses (H1) and (H3) from

Section 3.1 for the center manifold theorem.

Throughout this appendix we denote by ‖·‖` the usual norm of H`(RN), where

` ≥ −1 is an integer, and ‖ · ‖k,p the norm in W k,p(RN); in particular, ‖ · ‖0,p is

the norm in Lp(RN). For the sake of brevity, we will omit the domain RN from

the spaces H`, W k,p, and Lp.

A.1 Smoothness of the Nemytskii operator

In this section, we consider a function f : RN × R × Rd → R, where Rd with

d ∈ N is a parameter space (d = 0 is the case with no parameters). Under

suitable assumptions, we prove the C k-smoothness of the corresponding Nemytskii

operator f̃ acting on the space H`×Rd. In Section 3.2, the results proved here are

applied with d = 2, ` = m+1, k = K+1, and f as in (2.2), (S2). Actually, for that

application it would be sufficient to consider f̃ as a map defined on Hm+2(RN)

(with values in Hm+1(RN)) and m > N/2, so our result here is slightly more

general than needed above.
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While there are many texts on continuity and smoothness of Nemytskii and

substitution operators in Sobolev spaces (see, for example, the monographs [5, 62,

68]), we were not able to locate the results in the form we need. For bounded

domains, the smoothness of Nemytskii operators in Sobolev spaces is treated in

detail in [68]. It is not difficult, although not completely trivial, to modify the

proofs in [68] so that they also apply to the Sobolev spaces on RN if suitable as-

sumptions on f are made. We give here a different proof based on the boundedness

of Nemytskii operators and the converse to Taylor’s theorem. Although we only

consider the spaces H`, ` > N/2, we make no use of the Hilbert space structure

here. The same proof works for Nemytskii operators on W `,p(RN), p ∈ (1,∞), if

` > N/p.

We state the result in the following theorem, first, for operators without pa-

rameters, then with parameters. Given a function f ∈ C k+1+`(RN × R), the

Nemytskii operator f̃ of f takes a function u on R to a function f̃(u) defined by

f̃(u)(x) = f(x, u(x)) (x ∈ RN). (A.1)

We will only be dealing with functions u ∈ H`, with ` > N/2. In view of the

Sobolev imbedding theorem, we may assume that u is continuous on RN (more

precisely, it has a continuous representative, but we will not be making this dis-

tinction). Thus, f̃(u)(x) is defined for all x ∈ RN .

When f depends on a parameter τ ∈ Rd, f = f(x, u; τ), we define its Nemytskii

operator f̃ by

f̃(u; τ)(x) = f(x, u(x); τ). (A.2)

For j = 1, . . . , k, we denote by L j
s (H`, H`) the space of all bounded symmetric

j-linear maps from H` to itself; it is equipped with the standard operator norm.

Theorem A.1. Let ` > N/2 and k ≥ 0 be integers.

(a) Assume that f ∈ C k+`+1(RN × R) and for each ϑ > 0 the function f is

bounded on RN × [−ϑ, ϑ] together with all its partial derivatives up to order
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k + ` + 1. Assume further that f(·, 0) ∈ H` and for some constant C1 > 0

one has∣∣∣∣∂`+k+1f(x, y)

∂x`i ∂y
k+1

− ∂`+k+1f(x, 0)

∂x`i ∂y
k+1

∣∣∣∣ ≤ C1|y|

(x ∈ RN , y ∈ (−1, 1), i = 1, . . . , N). (A.3)

Then the Nemytskii operator f̃ takes H` to itself and, considered as an

operator on H`, f̃ is of class C k. Moreover, the k-th derivative of f̃ , as a

map from H` to L k
s (H`, H`), is Lipschitz on each bounded subset of H`.

(b) Assume that f ∈ C k+`+2(RN × R × Rd), f(x, 0; τ) = 0 for all x ∈ RN and

τ ∈ Rd, and for each ϑ > 0 the function f is bounded on RN× [−ϑ, ϑ]×{τ ∈
Rd : |τ | ≤ ϑ} together with all its partial derivatives up to order k + ` + 2.

Then the Nemytskii operator f̃ : H` × Rd → H` is of class C k.

Remark A.2. (a) The assumption f ∈ C k+`+1(RN × R) in statement (a) can

be relaxed a little. The continuity of the derivatives of f of order k + `+ 1 is

not needed; their existence and boundedness on the sets RN × [−ϑ, ϑ], ϑ > 0, is

sufficient.

(b) The mean value theorem implies that (A.3) holds if the regularity of f is

“one-degree” higher, that is, f ∈ C k+`+2(RN ×R) and for each ϑ > 0 the function

f is bounded on RN × [−ϑ, ϑ] together with all its partial derivatives up to order

k + ` + 2. Such a higher regularity is assumed in statement (b) for the sake of

simplicity.

(c) In the proof of statement (a), we also show that the derivative Dj f̃(u) is

given by the pointwise multiplication operator:

Dj f̃(u)[v, . . . , v](x) = Dj
yf(x, u(x))(v(x))j (u, v ∈ H`, j = 1, . . . , k), (A.4)

where

Dj
yf(x, y) =

∂j

∂yj
f(x, y). (A.5)
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In the rest of this section, ` > N/2 is fixed. By the Sobolev imbedding theorem,

H` ↪→ Cb(RN), thus we view each element of H` as a continuous function.

We prepare the proof of the theorem by several preliminary results. First of

all, we note that in statement (a) we may assume, without loss of generality, that

f ∈ C k+`+1
b (RN × R), (A.6)

that is, f and all its partial derivatives up to order k+ `+ 1 are bounded globally

on RN ×R (and not just on sets of the form RN × [−ϑ, ϑ]). Indeed, smoothness is

a local property; thus, to prove statement (a) (including the boundedness of the

k-th derivative) we just need to consider the restrictions of f̃ to bounded sets of

H`. Dealing with such restrictions, the values of f(x, y) for large |y| are irrelevant,

thanks to the imbedding H` ↪→ Cb(RN), thus we can modify f(x, y) for large |y|
so as to achieve (A.6).

We recall the following Banach algebra properties of H`. For the proof see

[2, 68], for example.

Lemma A.3. The space H` is closed under pointwise multiplication and for any

integer j ≥ 1 one has

‖v1 . . . vj‖` ≤ C‖v1‖` . . . ‖vj‖` (v1, . . . , vj ∈ H`), (A.7)

where C = C(j,N, `) is a constant. Consequently, if a ∈ Y , where Y = H` or

Y = C `
b(RN), then for any integer j ≥ 1 the map

Lj : (v1, . . . , vj) 7→ av1 . . . vj (A.8)

belongs to L j
s (H`, H`) and

‖Lj‖L j
s (H`,H`) ≤ C‖a‖Y , (A.9)

for some constant C = C(j,N, `) (independent of a).

In the next two lemmas, we show a boundedness and Lipschitz continuity

property of Nemytskii operators under lower regularity assumptions.
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Lemma A.4. Assume that f ∈ C `
b(RN × R), f(·, 0) ≡ 0, and for some constant

C1 > 0 one has∣∣∣∣ ∂`∂x`i f(x, y)

∣∣∣∣ ≤ C1|y| (x ∈ RN , y ∈ (−1, 1), i = 1, . . . , N). (A.10)

Then the Nemytskii operator f̃ takes H` to itself and it is bounded: for each ρ > 0

there is a constant C(ρ) (depending on f and ρ) such that for all u ∈ H` with

‖u‖` ≤ ρ one has

‖f̃(u)‖` ≤ C(ρ).

Remark A.5. If the condition f(·, 0) ≡ 0 is dropped, then the lemma can be

applied to the function f(x, u)− f(x, 0) if∣∣∣∣∂`f(x, y)

∂x`i
− ∂`f(x, 0)

∂x`i

∣∣∣∣ ≤ C1|y| (x ∈ RN , y ∈ (−1, 1), i = 1, . . . , N).

Proof of Lemma A.4. For f independent of x, the result is proved in [62, Section

5.24]. We just need minor modifications of the proof given there to yield the

present result.

As in [62], we use the fact that, due to the Fourier-multiplier characterization

of H`, the following expression gives an equivalent norm on H`:

‖v‖′` := ‖v‖0,2 +
N∑
i=1

∥∥∥∥∂`v∂x`i
∥∥∥∥

0,2

.

Thus, to prove the statement, we need to show that for each u ∈ H` the L2-norms

of the functions

f(x, u(x)),
∂`

∂x`i

(
f(x, u(x))

)
, i = 1, . . . , N, (A.11)

are finite, and are bounded from above by a constant determined by ρ if ‖u‖` ≤ ρ.

For f(x, u(x)), the estimate is simple. The bound ‖u‖` ≤ ρ yields a bound

on ‖u‖0,∞. The assumptions f ∈ C `
b(RN × R), f(·, 0) ≡ 0, imply that for any

y ∈ R with |y| ≤ ‖u‖0,∞ one has |f(x, y)| ≤ C̃|y|, where C̃ = C̃(ρ) is constant.

Therefore

|f(x, u(x))| ≤ C̃|u(x)| (x ∈ R),
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from which the desired estimate follows immediately.

Next, we estimate the derivatives in (A.11). As in [62], this is done by first

taking u ∈ C∞0 (RN) and then using the approximation properties of H`. Fix any

i ∈ {1, . . . , N}. Using the chain rule, one shows by induction that

∂`

∂x`i

(
f(x, u(x))

)
=

∂`

∂x`i
f(x, y)


y=u(x)

+Q(x), (A.12)

where Q is the sum of finitely many terms of the form p(x)q(x), where

p(x) =
∂j+s

∂xji∂y
s
f(x, y)


y=u(x)

(A.13)

for some integers s ≥ 1, j ≥ 0 satisfying j + s ≤ `, and

q(x) =
∂r1u(x)

∂xr1i

∂r2u(x)

∂xr2i
. . .

∂rsu(x)

∂xrsi
(A.14)

for some positive integers r1, . . . , rs satisfying j+ r1 + · · ·+ rs = `. In the proof of

Theorem 1 in [62, Section 5.2.4], the L2-norms of the products of the form (A.14)

are estimated in terms of a finite number of powers of ‖u‖`; in particular, the

L2-norms are bounded by a constant determined by ρ if ‖u‖` ≤ ρ. Obviously,

the same can then be said of the L2-norms of the products p(x)q(x), since the

function p(x) given by (A.13) is bounded.

It remains to estimate the first term on the right-hand side of (A.12). For that

we use (A.10). Each (continuous) function u ∈ H` with ‖u‖` ≤ ρ has its range

contained in (−cρ, cρ) (c is a constant from the Sobolev imbedding). Clearly,

(A.10) continues to hold if we take the interval (−cρ, cρ) in place of (−1, 1),

possibly after replacing the constant C1 by a larger constant C1(ρ). Consequently,

for u ∈ H` with ‖u‖` ≤ ρ the L2-norm of the function

∂`

∂x`i
f(x, y)


y=u(x)

is not greater than C1(ρ)‖u‖0,2 ≤ C1(ρ)ρ. This, in conjunction with the previous

estimates, completes the proof.
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Lemma A.6. Assume that f ∈ C `+1
b (RN ×R) and for some constant C0 > 0 one

has∣∣∣∣∂`+1f(x, y)

∂x`i∂y
− ∂`+1f(x, 0)

∂x`i∂y

∣∣∣∣ ≤ C1|y| (x ∈ RN , y ∈ (−1, 1), i = 1, . . . , N).

(A.15)

Then for each ρ > 0 and any two functions u, v ∈ H` with ‖u‖`, ‖v‖` ≤ ρ, one

has f̃(u)− f̃(v) ∈ H` and

‖f̃(u)− f̃(v)‖` ≤ C2(ρ)‖u− v‖`, (A.16)

where C2(ρ) is a constant determined by ρ (and independent of u and v).

Proof. Fix u, v ∈ H` with ‖u‖`, ‖v‖` ≤ ρ. For each x ∈ RN ,

(f̃(u)−f̃(v))(x) =

(∫ 1

0

Dyf
(
x, u(x) + t(u(x)− v(x))

)
dt

)(
u(x)−v(x)

)
. (A.17)

Write the integral in (A.17) as follows:∫ 1

0

(Dyf
(
x, u(x) + t(u(x)− v(x))

)
−Dyf(x, 0)) dt+Dyf(x, 0). (A.18)

We now apply Lemma A.4 to the function fy(x, y)− fy(x, 0), which is legitimate

by (A.15) (cp. Remark A.5). Thereby we obtain that for each t ∈ [0, 1] the

function fy(x, u(x) + t(u(x) − v(x))) belongs to H` and its H`-norm is bounded

by a constant C = C(ρ). From this it follows that the integral in (A.18) is also

a function in H` with norm bounded by C(ρ). Since fy(x, 0) is a function in C `
b ,

we conclude, using (A.17) and the second statement of Lemma A.3 with j = 1,

that f̃(u)− f̃(v) ∈ H` and its norm is estimated as in (A.16).

We are in a position to prove Theorem A.1.

Proof of statement (a) of Theorem A.1. As noted above, we may assume without

loss of generality that (A.6) holds.

Given u ∈ H`, we have f̃(u) = f̃(u)−f̃(0)+f̃(0). Since the function f̃(0)(x) =

f(x, 0) belongs to H` by assumption, Lemma A.6 (with v = 0) implies that

f̃(u) ∈ H`. Thus f̃ takes H` into itself.
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Next, given any two functions u, v ∈ H`, Taylor’s theorem gives, for each

x ∈ RN , the following expansion

(f̃(u+ v)− f̃(u))(x) =
k∑
j=1

1

j!
Dj
yf(x, u(x))(v(x))j +R(x, u(x), v(x))(v(x))k,

(A.19)

where Dj
yf(x, y) is as in (A.5) and

R(x, y, z) =

∫ 1

0

(1− t)k−1

(k − 1)!

(
Dk
yf(x, y + tz)−Dk

yf(x, y)
)
dt. (A.20)

According to the converse to Taylor’s theorem [1, 36], the map f̃ is of class C k,

with the derivatives as in (A.4), provided the following holds. The symmetric

multilinear operators Lj(u), j = 1, . . . , k, and L(u, v) defined by

Lj(u)[v1, . . . , vj](x) = Dj
yf(x, u(x))v1(x) . . . vj(x) (v1, . . . , vj ∈ H`), (A.21)

L(u, v)[v1, . . . , vk](x) = R(x, u(x), v(x))v1(x) . . . vk(x) (v1, . . . , vk ∈ H`),

(A.22)

are bounded, the maps

u 7→ Lj(u) : H` → L j
s (H`, H`), (A.23)

(u, v) 7→ L(u, v) : H` ×H` → L j
s (H`, H`) (A.24)

are continuous, and L(u, 0) = 0. The last property is obvious. Consider now

the operator Lj(u), for any j ∈ {1, . . . , k}. Observe that Lemma A.6 applies to

the function Dj
yf . Indeed, condition (A.15) (with f replaced by Dj

yf) holds for

j < k due to Dj
yf ∈ C `+2

b and for j = k due to assumption (A.3). Let D̃j
yf be

the Nemytskii operator of Dj
yf . From Lemma A.6, we obtain, first of all, that for

each u ∈ H`,

D̃j
yf(u)− D̃j

yf(0) ∈ H`.

Writing

D̃j
yf(u) = D̃j

yf(u)− D̃j
yf(0) + D̃j

yf(0)
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and noting that D̃j
yf(0) is the C `

b -function Dj
yf(x, 0), we obtain from Lemma A.3

that the j-linear map Lj(u) is bounded. Moreover, using (A.9) and Lemma A.6,

we infer that for arbitrary ρ > 0 and u, ū ∈ H` with ‖u‖`, ‖ū‖` ≤ ρ one has

‖Lj(u)− Lj(ū)‖L j
s (H`,H`) ≤ C(ρ)‖u− ū‖`, (A.25)

where C(ρ) is a constant independent of u, ū. This gives the continuity—even

Lipschitz continuity on bounded sets—of u 7→ Lj(u).

The boundedness of L(u, v) and its Lipschitz continuity on bounded subsets

of H`×H` are proved by similar arguments (cp. the proof of Lemma A.6) and we

omit the details.

The proof of statement (a) is now complete.

Proof of statement (b) of Theorem A.1. The hypotheses of statement (b) guar-

antee (cp. Remark A.2), that statement (a) applies to f(·, ·; τ) for each τ . This

implies in particular that f̃ takes H` × Rd to H`.

As in statement (a) (cp. (A.6)), we may assume without loss of generality that

f ∈ C k+`+2
b (RN × R× Rd). (A.26)

To prove that f̃ : H` × Rd → H` is of class C k, we use the converse to Taylor’s

theorem again. Given any u, v ∈ H`, τ, ς ∈ Rd, we first write down the multivari-

able Taylor expansion at each x ∈ RN . Taking τ = (τ1, . . . , τd), ς = (ς1, . . . , ςd),

and using the standard multiindex notation, we have

(
f̃(u+ v; τ + ς)− f̃(u; τ)

)
(x) =

k∑
j=0

∑
β∈Nd

1≤j+|β|≤k

1

j!β!
Dβ
τD

j
yf(x, u(x); τ)(v(x))jςβ

+
k∑
j=0

∑
β∈Nd
j+|β|=k

Rj,β(x, u(x), v(x); τ, ς)(v(x))jςβ, (A.27)

where, for β = (β1, . . . , βd),

Dβ
τD

j
yf(x, y; τ) =

∂j+|β|

∂τβ11 . . . ∂τβdd ∂yj
f(x, y; τ), (A.28)
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and

Rj,β(x, y, z; τ, ς) =
1

j!β!

∫ 1

0

(1− t)k−1

(k − 1)!

(
Dβ
τD

j
yf(x, y+tz; τ+tς)−Dβ

τD
j
yf(x, y; τ)

)
dt.

(A.29)

As in the proof of statement (a), the functional coefficients in this expansion

define symmetric multilinear maps (by pointwise multiplication). We need to

prove that these multilinear maps are bounded on H` × Rd and depend contin-

uously in the multilinear-operator norm on (u, τ) ∈ H` × Rd, or, in the case

of Rj,β, on (u, v, τ, ς) ∈ H` × H` × Rd × Rd (the additional needed relations

Rj,β(x, u(x), 0; τ, 0) = 0 are trivial). The boundedness is proved as in (a) (since

τ is in a finite dimensional space, we only need to worry about the boundedness

in u ∈ H`). Also as in (a), the proof of the continuity amounts to proving the

continuous dependence of the Nemytskii operators, viewed as maps from H`×Rd

to H`, of the functions

Dj
yD

β
τ f(x, y; τ)−Dj

yD
β
τ f(x, 0; τ) (j = 0, . . . , k, β ∈ Nd, 1 ≤ j+|β| ≤ k). (A.30)

We claim that these Nemytskii operators are Lipschitz on each bounded subset of

H`×Rd. Indeed, each of the functions (A.30) is at least of class C `+2
b . Therefore,

as in (a), its Nemytskii operator is Lipschitz in u, uniformly for (u, τ) in any given

bounded subset of H` × Rd. The uniform Lipschitz continuity in τ follows from

(A.26). Similar considerations show the continuity of the operators defined by

Rj,β.

A.2 Bound on the resolvent

This section is devoted to the proof of the resolvent bound stated in hypothesis

(H3) in Section 3.1. We essentially use a proof found in [70], modifying and

extending it slightly to account for the differences in our setting.

Recall that in Chapter 3 we defined the operator A1 = −∆ − a1(x) on Hm,

with domain D(A1) = Hm+2. Here we assume, as in (S2), a1 ∈ Cm+1
b , and the
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integer m satisfies m > N/2 (it actually suffices here to assume a1 ∈ Cm
b ). Recall

also that A is the operator on Hm+1 ×Hm, with domain D(A) = Hm+2 ×Hm+1,

given by

A(u1, u2) = (u2, A1u1)T . (A.31)

Below, we suppress the argument x from a1 for the sake of clarity.

Proposition A.7. Assume that a1 ∈ Cm+1
b , where m > N/2 is an integer, and

A be defined as above. Then there exist ω̂0 > 0 and a constant C, depending only

on m, N , and ‖a1‖m,∞, such that for all ω̂ ∈ R satisfying |ω̂| > ω̂0 one has

‖(iω̂ − A)−1‖L (Hm+1×Hm) ≤
C

|ω̂|
. (A.32)

The proof of Proposition A.7 goes along similar lines as an example in [70],

where a domain with a bounded cross-section is considered. We will use estimates

of solutions of the equation

−∆u− a1u+ τ 2u = v, (A.33)

where τ ∈ R. By standard results, if |τ | >
√

1 + ‖a1‖0,∞, then for each v ∈ L2

this equation has a unique solution u ∈ H2. Moreover, if v ∈ Hj, j ∈ {m− 1,m},
then v ∈ Hj+2.

Lemma A.8. Under the assumptions of Proposition A.7, there exist constants

Bm,N and Cm,N , depending only on m and N , such that if |τ | >
√

1 + α1, where

α1 := Cm,N‖a1‖m,∞, then the following statements hold:

(a) If v ∈ Hm and u ∈ Hm+2 is the solution of (A.33), then

(τ 2 − α1)‖u‖m ≤ Bm,N‖v‖m, (A.34)

and

(τ 2 − α1 − 1)1/2‖u‖m+1 ≤ Bm,N‖v‖m. (A.35)
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(b) If v ∈ Hm−1 and u ∈ Hm+1 is the solution of (A.33), then

‖u‖m+1 ≤ Bm,N‖v‖m−1, (A.36)

and

(τ 2 − α1 − 1)1/2‖u‖m ≤ Bm,N‖v‖m−1. (A.37)

Proof. Recall that for J = (j1, . . . , jn) ∈ Nn

DJ =
∂|J |

∂xj11 . . . ∂x
jn
n

.

For |J | ≤ m, applying DJ to (A.33), we obtain

−∆(DJu)−DJ(a1u) + τ 2DJu = DJv. (A.38)

Multiplying (A.38) by DJu, integrating by parts, and applying the Hölder in-

equality, we obtain∫
RN
|∇DJu|2 dx+τ 2‖DJu‖2

0,2 ≤ ‖DJv‖0,2‖DJu‖0,2+

∫
RN
DJ(a1u)DJu dx. (A.39)

Computing the derivative of a1u using the Leibniz rule, one finds a constant C ′,

depending only on m and N , such that∫
RN
DJ(a1u)DJu dx ≤ C ′‖a1‖m,∞‖u‖2

m.

Substituting in (A.39), we obtain∫
RN
|∇DJu|2 dx+ τ 2‖DJu‖2

0,2 ≤ ‖v‖m‖u‖m + C ′‖a1‖m,∞‖u‖2
m. (A.40)

Dropping the first term of (A.40), and adding over all multiindices J satisfying

|J | ≤ m, we obtain

τ 2‖u‖2
m ≤ Bm,N(‖v‖m‖u‖m + C ′‖a1‖m,∞‖u‖2

m).

Setting Cm,N = Bm,NC
′, α1 = Bm,NC

′‖a1‖m,∞, we have

(τ 2 − α1)‖u‖2
m ≤ Bm,N‖v‖m‖u‖m,
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that is, (A.34) holds.

Equation (A.40) can also be rewritten as

‖DJu‖2
1 + (τ 2 − 1)‖DJu‖2

0,2 ≤ ‖v‖m‖u‖m + C ′‖a1‖m,∞‖u‖2
m. (A.41)

Since ∑
J∈NN
|J |≤m

‖DJu‖2
1 ≥

∑
J∈NN
|J |≤m+1

‖DJu‖2
0,2 = ‖u‖2

m+1,

adding over all multiindices J satisfying |J | ≤ m in (A.41), we obtain

‖u‖2
m+1 + (τ 2 − 1− α1)‖u‖2

m ≤ Bm,N‖v‖m‖u‖m.

Since the left hand side dominates (τ 2 − 1− α1)1/2‖u‖m+1‖u‖m, (A.35) follows.

To prove statement (b), we return to (A.38) again. Similar computations as

above, but with an extra integration by parts (to move a derivative from v to u),

yield

‖u‖2
m+1 + (τ 2 − α1 − 1)‖u‖2

m ≤ Bm,N‖v‖m−1‖u‖m+1. (A.42)

Strictly speaking, in the above computations we assumed that v ∈ Hm and u ∈
Hm+2, but it can be verified easily that the result remains valid if v ∈ Hm−1, taking

into account that in the worst case one may have DJv ∈ H−1 (alternatively, one

can prove the final estimate by approximating v in Hm−1 by functions in Hm).

Since τ 2−α1−1 > 0, we can drop the second term of the left hand side of (A.42)

to get (A.36). The left hand side of (A.42) dominates (τ 2−α1−1)1/2‖u‖m+1‖u‖m,

from which we obtain (A.37).

Proof of Proposition A.7. In this proof, C1, C2, C3, C ′3, and C4 are constants

depending only on m, N , and ‖a1‖m,∞.

Recall that the operator A has 2n (purely) imaginary eigenvalues ±iω1, . . . ,

±iωn, with ωj > 0. Set ωM = maxj ωj. Let λ = iω̂, where ω̂ ∈ R satisfies

|ω̂| > ωM + 1 and ω̂2 > α1 + 1, with α1 = Cm,N‖a1‖m,∞, as in Lemma A.8. For
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u = (u1, u2) and v = (v1, v2), consider the equation Au = λu+ v, or, equivalently,

u2 = λu1 + v1

−∆u1 − a1u1 = λu2 + v2.
(A.43)

Eliminating u2 from (A.43), we get

−∆u1 − λ2u1 − a1u1 = λv1 + v2,

or,

−∆u1 + ω̂2u1 − a1u1 = λv1 + v2. (A.44)

If v1 ≡ 0 and v2 ∈ Hm, applying Lemma A.8(a) to (A.44) gives

‖u1‖m ≤
Bm,N

ω̂2 − α1

‖v2‖m,

‖u1‖m+1 ≤
Bm,N

(ω̂2 − α1 − 1)1/2
‖v2‖m ≤

C1

|ω̂|
‖v2‖m. (A.45)

Since u2 = iω̂u1,

‖u2‖m ≤
Bm,N |ω̂|
ω̂2 − α1

‖v2‖m ≤
C2

|ω̂|
‖v2‖m. (A.46)

Now take v2 ≡ 0, v1 ∈ Hm+1. Eliminating u1 from (A.43), we get

−∆u2 + ω̂2u2 − a1u2 = −∆v1 − a1v1.

From Lemma A.8(b), we deduce

‖u2‖m+1 ≤ Bm,N‖∆v1 + a1v1‖m−1 ≤ C3‖v1‖m+1, (A.47)

and

(ω̂2 − α1 − 1)1/2‖u2‖m ≤ Bm,N‖∆v1 + a1v1‖m−1 ≤ C3‖v1‖m+1. (A.48)

Relations (A.48) imply

‖u2‖m ≤
C3

(ω̂2 − α1 − 1)1/2
‖v1‖m+1 ≤

C ′3
|ω̂|
‖v1‖m+1; (A.49)
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while, using u1 = (u2 − v1)/(iω), relations (A.47) yield

‖u1‖m+1 ≤
C4

|ω̂|
‖v1‖m+1. (A.50)

Combining (A.46), (A.49); (A.45), (A.50); and the fact that (iω̂ − A)−1 is a

linear operator, we conclude that (A.32) holds for all ω̂ ∈ R satisfying |ω̂| ≥ ω̂0,

where ω̂0 ∈ R satisfies ω̂0 > max{
√
α1 + 1, ωM + 1}.

Remark A.9. In the parameter-dependent case it is possible to prove the ex-

istence of a constant C such that (A.32) holds uniformly for s ∈ [0, δ]. Indeed,

suppose that instead of the operator A1 = −∆− a1(x) we consider the family of

operators A1(s) = −∆−a1(x; s), where the map s ∈ [0, δ] 7→ a1(·; s) is continuous

in the Cm(RN)-norm, and δ > 0. In this setting the operator A, defined in (A.31)

depends on s via A1. If ω̂0 is sufficiently large, in particular, such that the set

{iλ : |λ| > ω̂0} does not intersect the spectrum of A(s) for any s ∈ [0, δ], then C

can be chosen sufficiently large so that (A.32) holds for all s ∈ [0, δ]. This fact is

a direct consequence of C depending only on m, N , and ‖a1‖m,∞.


