Homework Assignment 1

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the other will be marked for completion. Assignments will be submitted via *Crowdmark*. You will be graded on your solution *and* how well you write your proof.

Part A. [Short Questions; 4pts]

Exercise 1. Let V be a vector space over a field F. Show that for all $x \in V$ there is a unique y such that x + 2024y = 0.

Exercise 2. Show that the set $S = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}, x_1 \leq 0, x_2 \geq 0\}$ is not a real vector space.

Part B. [Proof Questions; 6pts]

Exercise 3. Let $V = F^{\infty}$ and let

 $W = \{(x_1, \dots, x_{2023}, 0, x_{2025}, x_{2026}, \dots) \mid x_i \in F\} \subseteq V.$

That is, W consists of all the elements of F^{∞} whose 2024^{th} coordinate is zero. Prove that W is a subspace of V.

Exercise 4. Consider the subspaces $U = \{(2024x, 0) \mid x \in \mathbb{R}\}$ and $V = \{(y, y) \mid y \in \mathbb{R}\}$ of \mathbb{R}^2 . Prove that $\mathbb{R}^2 = U + V$.

Hint. There are two things you need to show: (a) $\mathbb{R}^2 \subseteq U + V$ and (b) $U + V \subseteq \mathbb{R}^2$. (You do not need to prove that U and V are subspaces, but you should convince yourself that this is true.)

Additional Suggested Problems. [Not graded]

Problems 1.A # 10, 11, 15, 1.B # 1, 2, 3 1.C # 6, 10, 23