Homework Assignment 3

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the other will be marked for completion. Assignments will be submitted via *Crowdmark*. You will be graded on your solution *and* how well you write your proof.

Part A. [Short Questions; 4pts]

Exercise 1. Let U be a subspace of the vector space F^{2024} with dim U = 1015. Suppose W is another subspace of F^{2024} such that $U + W = F^{2024}$ and dim $U \cap W \ge 1000$. Find upper and lower bounds on dim W.

Exercise 2. Let $p_1(x) = x + x^3$ and $p_2(x) = 2024$ be elements in the vector space $V = \mathcal{P}_3(\mathbb{R})$. Extend $\{p_1(x), p_2(x)\}$ to a basis of V.

Remark. You need to find a basis of $\mathcal{P}_3(\mathbb{R})$ where the first two elements in your basis are $p_1(x)$ and $p_2(x)$.

Part B. [Proof Questions; 6pts]

Exercise 3. Let $V = \mathcal{P}_3(\mathbb{R})$ be the vector space of polynomials of degree at most three.

- (1) Suppose $q_0, q_1, q_2, q_3 \in V$ are four polynomials such that deg $q_i = i$ for i = 0, ..., 3. Prove that $\{q_0, q_1, q_2, q_3\}$ is a basis of V.
- (2) Find four polynomials $p_0, p_1, p_2, p_3 \in V$ such that deg $p_i = 3$ for all i = 0, ..., 3 and $\{p_0, \ldots, p_3\}$ is a basis for V.

Remark. There is nothing special about m = 3 in this case. Given polynomials $q_0, q_1, \ldots, q_m \in V = \mathcal{P}_m(\mathbb{R})$ with deg $q_i = i$ for $i = 0, \ldots, m$, then you can prove that $\{q_0, \ldots, q_m\}$ is a basis for V.

Exercise 4. A matrix A is *skew-symmetric* if $A^T = -A$, where A^T denotes the transpose. For example, the matrix

$$A = \begin{bmatrix} 0 & 1 & -2024 \\ -1 & 0 & 3 \\ 2024 & -3 & 0 \end{bmatrix}$$

is skew-symmetric. Let $V = F^{3,3}$ be the vector space of all 3×3 matrices, and let

 $W = \{ A \in V \mid A \text{ is skew-symmetric} \}.$

The set W is a subspace of V (you don't need to prove this).

- (1) What is $\dim W$? Justify your answer.
- (2) Let U be the subspace of all symmetric matrices, i.e., $U = \{A \in V \mid A^T = A\}$. Prove dim $U \leq 6$. (It turns out that dim U = 6, but you don't need to justify this fact.)

Additional Suggested Problems. [Not graded]

Problems 2.A # 3, 13 2.B #3, 7, 10, 2.C #11, 14, 17