Homework Assignment 4

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via *Crowdmark*. You will be graded on your solution *and* how well you write your proof.

Part A. [Short Questions; 4pts]

Exercise 1. Let $V = \mathbb{R}^2$ with basis $\mathcal{B} = \{(2,5), (3,7)\}$. Let $T \in \mathcal{L}(V, V)$ and suppose that T(x,y) = (2024x, 2024x + 2024y).

Compute $\mathcal{M}(T, \mathcal{B}, \mathcal{B})$ (Remember, this means finding the matrix of T with respect to a particular basis \mathcal{B})

Hint. You are allowed to use Matlab or Octave for Exercise 1 if you wish.

Exercise 2. Let $V = \mathcal{P}_{2024}(\mathbf{F})$ and $W = \mathcal{P}_{10}(\mathbf{F})$. Exlain why there is no $T \in \mathcal{L}(V, W)$ with dim null(T) = 312.

Part B. [Proof Questions; 6pts]

Exercise 3. Suppose that $v_1, \ldots, v_{2024} \in \mathbf{F}^{2023}$ are 2024 distinct vectors. Prove that for any vector space W and for any linear map $T \in \mathcal{L}(\mathbf{F}^{2023}, W)$, the vectors Tv_1, \ldots, Tv_{2024} are linear dependent in W.

Exercise 4. Let V and W be finite dimensional vector spaces (with dim $V \neq 0$ and dim $W \neq 0$) and $T \in \mathcal{L}(V, W)$. Suppose that there are bases $\mathcal{B} = \{v_1, \ldots, v_n\}$ of V and $\mathcal{C} = \{w_1, \ldots, w_m\}$ for W such that $\mathcal{M}(T, \mathcal{B}, \mathcal{C})$ with respect to these bases contains only the values 2024, i.e.,

	2024	• • •	2024	
$\mathcal{M}(T,\mathcal{B},\mathcal{C}) =$:		÷	
	2024		2024	

Prove that $\dim \operatorname{Null}(T) = \dim V - 1$.

Additional Suggested Problems. [Not graded]

Problems 3.A #2, 4, 7, 3.B #2, 6, 9, 3.C #2, 5, 6, 3.D #2, 3, 5