NAME: \qquad

STUDENT NUMBER: \qquad

MATH 2255 - Final Exam
Lakehead University
December 8, 2005
Dr. Adam Van Tuyl

Instructions: Answer all questions in the space provided. If you need more room, answer on the back of the previous page. Where appropriate, you must provide clear explanations.

You are not allowed to use a calculator.
If doubt exists as to the interpretation of any question, you are urged to submit with the answer paper a clear statement of any assumptions made.

Page	Possible	Received
2	10	
3	10	
4	6	
5	8	
6	6	
7	6	
8	10	
9	9	
10	10	
11	8	
Total	83	

1. [4 pts] Solve the system of linear equations

$$
\begin{aligned}
2 x_{2}+3 x_{3} & =8 \\
2 x_{1}+3 x_{2}+x_{3} & =5 \\
x_{1}-x_{2}-2 x_{3} & =-5
\end{aligned}
$$

You may use any method introduced in the course.
2. [6 pts] Give examples of the following:
(a) a system of linear equations that is inconsistent.
(b) a homogeneous system of linear equations homogeneous.
(c) a system of linear equations with only one solution.
3. [$5 \mathbf{~ p t s}$] Find the inverse of the following matrix

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 2 & 4 \\
1 & 3 & -3
\end{array}\right]
$$

You may use any method introduced in the course.
4. [5 pts] Compute the determinant of the matrix

$$
A=\left[\begin{array}{cccc}
1 & -1 & 0 & 3 \\
2 & 5 & 2 & 6 \\
0 & 1 & 0 & 0 \\
1 & 4 & 2 & 1
\end{array}\right]
$$

You may use any method we learned in class.
5. Consider the following matrix

$$
A=\left[\begin{array}{ccc}
2 & -4 & 0 \\
3 & -1 & 4 \\
-1 & 2 & 2
\end{array}\right]
$$

(a) [4 pts] Find the $L U$-factorization of A.
(b) $[\mathbf{2} \mathbf{p t s}]$ Use part (a) to solve $A \mathbf{x}=\mathbf{b}$ when $\mathbf{b}=\left[\begin{array}{c}2 \\ 0 \\ -5\end{array}\right]$.
6. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation, and suppose that we know that

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}
2 \\
5
\end{array}\right] \quad T\left(\mathbf{e}_{3}\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are the standard basis elements of \mathbb{R}^{3}.
(a) [2 pts] What is the standard matrix A for the linear transformation T ? That is, what is the matrix A such that $T(\mathbf{x})=A \mathbf{x}$?
(b) [3 pts] Is T a one-to-one mapping? Justify your answer.
(c) [3 pts] Is T a onto mapping? Justify your answer.
7. [6 pts] Consider the following subsets of \mathbb{R}^{3} :

$$
W_{1}=\left\{\left.\left[\begin{array}{c}
a \\
-a \\
2 a
\end{array}\right] \right\rvert\, a \in \mathbb{R}\right\} \text { and } W_{2}=\left\{\left.\left[\begin{array}{c}
a \\
b \\
a+b+1
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

For each subset, determine whether they are subspaces of \mathbb{R}^{3}.
8. [6 pts] Consider the following three polynomials of \mathbb{P}_{2} :

$$
\mathbf{p}_{1}(t)=1+t-2 t^{2}, \quad \mathbf{p}_{2}(t)=2+5 t-t^{2}, \quad \mathbf{p}_{3}(t)=t+t^{2}
$$

Determine if $\mathbf{p}_{1}(t), \mathbf{p}_{2}(t), \mathbf{p}_{3}(t)$ are linearly independent.
9. Consider the sets

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\} \quad \text { and } \mathcal{C}=\left\{\left[\begin{array}{c}
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2
\end{array}\right]\right\} .
$$

(a) [$\mathbf{2} \mathbf{~ p t s}]$ Explain why \mathcal{B} and \mathcal{C} are bases of \mathbb{R}^{2}.
(b) $[\mathbf{2} \mathbf{~ p t s}]$ Find the vector \mathbf{x} whose \mathcal{B}-coordinate vector $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}4 \\ -2\end{array}\right]$.
(c) $[\mathbf{2} \mathbf{~ p t s}]$ Find the \mathcal{C}-coordinate of the vector $\mathbf{x}=\left[\begin{array}{c}4 \\ -2\end{array}\right]$.
(d) [2 pts] Find the change-of-coordinates matrix $\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}$ from \mathcal{B} to \mathcal{C}.
(e) [2 pts] Use Part (d) to find $\mathcal{B} \stackrel{P}{\leftarrow} \mathcal{C}$.
10. Assume that A is row equivalent to the matrix B :

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 3 & 1 & 6 \\
2 & -1 & 0 & 1 & -1 \\
-3 & 2 & 1 & -2 & 1 \\
4 & 1 & 6 & 1 & 3
\end{array}\right], \quad B=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & -1 \\
0 & 1 & 2 & 0 & 3 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find a basis for
(a) $[\mathbf{3} \mathbf{p t s}] \operatorname{Nul}(A)$.
(b) $[\mathbf{3} \mathbf{p t s}] \operatorname{Col}(A)$.
(c) $[\mathbf{3} \mathbf{~ p t s}] \operatorname{Row}(A)$.
11. [10pts] The following statements are FALSE. Explain why they are false by using a relevant theorem, or by giving a counterexample.
(a) There exists a 3×6 matrix A with $\operatorname{rank}(A)=4$.
(b) If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are any n vectors of a vector space V, and $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, then $\operatorname{dim} H=n$.
(c) If A is an $m \times n$, then $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^{m}.
(d) A plane in \mathbb{R}^{3} is a two-dimensional subspace.
(e) If the set \mathcal{B} is a basis for \mathbb{P}_{7}, then the set \mathcal{B} has 7 elements.
12. [4 pts] Suppose that A is a 5×7 matrix and suppose that $\operatorname{Col}(A)=\mathbb{R}^{5}$. What is $\operatorname{dim} \operatorname{Nul}(A)$? Justify your answer.
13. [4 pts] Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Find the 2×2 matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{2}$.

