> | Challenge Exercise 2 |
| :---: |
| MATH $1281-2007$ |
| Due Date: Nov. 9, 2007 |

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the problem correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name.

Problem 1. [5pts] Let A be any set, and let $f: A \rightarrow A$ be any function. We define a sequence of sets $\left\{A_{n} \mid n \in \mathbb{N}\right\}$ where

$$
A_{0}=A \text { and } A_{n+1}=f\left(A_{n}\right) \text { for all } n \geq 0
$$

Prove the following statements:
(a) For all $n \geq 0, A_{n+1} \subseteq A_{n}$.
(b) Let

$$
A^{*}=\bigcap_{n \in \mathbb{N}} A_{n}
$$

Then $f\left(A^{*}\right) \subseteq A^{*}$.

Problem 2. [5pts] Let m and n be positive integers. Let f be the function from

$$
X=\{0,1, \ldots, m-1\}
$$

to X, that is, $f: X \rightarrow X$, defined by

$$
f(x)=n x \quad(\bmod m)
$$

Prove that if f is one-to-one, then $\operatorname{gcd}(m, n)=1$. (Hint: Show the function f is also onto. Then there exists some $x \in X$ such that $f(x)=n x \equiv 1(\bmod m)$.)

