> | Challenge Exercise 4 |
| :---: |
| MATH $1281-2007 / 08$ |
| Due Date: March 14,2008 |

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the problem correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name.

Problem.

(1) [5pts] Let f_{n} denote the nth Fibonacci number. Show that if $a_{n}=a_{n-1}+a_{n-2}, a_{0}=s$ and $a_{1}=t$, where s and t are constants, then

$$
a_{n}=s f_{n-1}+t f_{n} \text { for all } n \geq 0
$$

(2) [5pts] Let $\mathcal{M}_{m \times n}$ be the set of $m \times n$ matrices of size $m \times n$. If $M, N \in \mathcal{M}$, we write $M \leq N$ if $m_{i j} \leq n_{i j}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$. Prove that \leq is a partial order on the set $\mathcal{M}_{m \times n}$.

