\qquad
Student Number: \qquad

Math 1XX3 (Calculus for Math and Stats II) Midterm 2
 Adam Van Tuyl, McMaster University

Day Class

Duration of Midterm: 50 minutes

Midterm

This midterm paper includes 6 pages and 9 questions. You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your INVIGILATOR.

Special Instruction

- Only the McMaster Standard Calculator (Casio fx 991) is allowed.
- All solutions should be written on the exam.
- The total number of points is 40 . Do all of the 9 questions.
- For multiple choice questions, full marks will be received for a questions with the correct circled answer. For incorrect answers, part marks are based upon work provided.
- Use the back of pages if you need more room.

Page	Possible	Received
2	8	
3	8	
4	6	
5	10	
6	8	
Total	40	

1. [4 pts] A ball is dropped from a height of 10 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels (assume the ball bounces an infinite number of times).
a. 10 m
b. 20 m
c. 30 m
d. 40 m
e. $\infty \mathrm{m}$
2. [4 pts] Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \arctan n}{n^{4}}
$$

[Hint: What's an upper bound for $\arctan x$?]
a. conditionally convergent
b. absolutely convergent
c. divergent
3. [4pts] Test for convergence or divergence (use any test): $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+4}$.
4. [4pts] Test for convergence or divergence (use any test): $\sum_{n=2}^{\infty} \frac{5}{n(\ln n)^{2}}$.
5. [4pts] Test for convergence or divergence (use any test): $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$.
[Hint: You may want to use the fact that $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$.]
6. [$\mathbf{2} \mathbf{~ p t s}]$ What is wrong with following argument that $0=\pi$:

$$
\begin{aligned}
0 & =0+0+0+0+\cdots \\
& =(\pi-\pi)+(\pi-\pi)+(\pi-\pi)+\cdots \\
& =\pi+(-\pi+\pi)+(-\pi+\pi)+(-\pi+\pi)+\cdots \\
& =\pi+0+0+\cdots=\pi
\end{aligned}
$$

7. [$\mathbf{5} \mathbf{~ p t s]}$ Let $C>0$ be any positive real number. Find the radius of convergence and the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{(C x)^{n}}{n!}
$$

a. $R=C, I=(-C, C)$
b. $R=0, I=[0]$
c. $R=C, I=[-C, C]$
d. $R=\infty, I=(-\infty, \infty)$.
8. [$\mathbf{5} \mathbf{~ p t s}$] The Maclaurin Series of $\sin x$ is given by

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

Use this fact to find the values of r and s for which

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 3 x}{x^{3}}+\frac{r}{x^{2}}+s\right)=0 .
$$

9. [8 pts] The following statements are all FALSE. For each statement, give an example to show that the statement is false.
(a) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $\sum_{n=1}^{\infty} a_{n}^{2}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(c) A series that converges must converge absolutely.
(d) If $0 \leq a_{n} \leq b_{n}$ for all $n \geq 0$ and if $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ also diverges.
