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1. Suppose that the augmented matrix of system of linear equations has been placed
into the following reduced row echelon form:

1 2 0 5 0 −3
0 0 1 −1 0 1
0 0 0 0 1 2
0 0 0 0 0 0

 .
The set of solutions for this systems is described by

(a)

x1 = −3
x2 = 0
x3 = 1
x4 = 0
x5 = 2

(b)

x1 = −3− 2q − 5r
x2 = q
x3 = 1 + r
x4 = r
x5 = 2

(c)

x1 = 3 + 2q + 5r
x2 = q
x3 = 1− r
x4 = r
x5 = 2

(d)

x1 = 2q + 5r
x2 = q
x3 = −1 + r
x4 = r
x5 = −2

2. Consider the following system of linear equations:

x1 + x2 + x3 + x4 = 1

2x1 + 2x2 + 2x3 + 2x4 = 2

2018x1 + 2018x2 + 2018x3 + 2018x4 = 2018

How many solutions does it have?

(a) 0

(b) 1

(c) 4

(d) 2018

(e) Infinitely many
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3. Let

A =

[
2 5
−3 1

]
and B =

[
4 −5
3 x

]
.

What are all the real values of x so that AB = BA.

(a) x = −5

(b) x = 1 or x = −1.

(c) x = 5.

(d) All real numbers x

(e) No such x exists

4. Compute A if (AT − 3I)−1 =

[
−1 1
2 1

]
.

(a) 1
4

[
12 −2
−2 7

]
(b) 1

3

[
8 2
1 10

]
(c) 1

4

[
10 −2
−2 6

]
(d) 1

3

[
5 −2
−1 7

]
(e) 1

4

[
4 −2
−1 8

]
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5. A matrix A is said to be involutory if A = A−1. Which of the following matrices
are involutory:

A =

[
1 2
3 4

]
B =

[
0 1
1 0

]
C =

[
1 0
1 0

]
D =

[
1 −1
−1 1

]
(a) Only B.

(b) Only D.

(c) A and B.

(d) Only C.

(e) None of them.

6. For what value of k is the matrix A not invertible, where

A =


k 0 1 0
2 2 0 0
0 2 2 3
0 1 1 1

 .
[Hint: What is det(A)?]

(a) −2 (b)−1 (c)1 (d)2 (e) 3
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7. If A, B, C and D are invertible matrices of the same size and

(ATB)−1CA−1 = D

which of the following must be C?

(a) ATBDA

(b) BATDA

(c) (AT )−1BDA

(d) ATB−1DA

(e) ATBD−1A

8. Which one of the following statements is not equivalent to the others?

(a) A is invertible.

(b) Ax = 0 has a unique solution.

(c) The reduced row echelon form of A is In.

(d) λ = 0 is an eigenvalue of A.

(e) det(A) 6= 0.
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9. The rank of a matrix A is the number of leading 1’s in the reduced row echelon
form of A. What is the rank of the matrix

A =

1 2 −1 0
0 4 −2a 2
1 4a+ 2 −2a2 − 1 2a

 .
(a) 0

(b) 1

(c) 2

(d) 3

(e) Not enough information; answer will depend upon the value of a.

10. Let TA : R3 → R3 be a linear transformation such that

TA(e2) =

1
2
3

 , TA(e3) =

3
2
1

 , and TA(e1 + e2 + e3) =

1
1
1


where e1, e2 and e3 are the standard basis vectors. What is the standard matrix of
this linear transformation?

(a)

1 1 3
1 2 2
1 3 1

 (b)

4 1 3
4 2 2
4 3 1

 (c)

1 2 3
3 2 1
1 1 1

 (d)

1 2 3
1 2 3
1 2 3

 (e)

−3 1 3
−3 2 2
−3 3 1


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11. Given the matrices

A =

a b c
d e f
g h i

 and B =

d 2a g − 3d
e 2b h− 3e
f 2c i− 3f


and the fact that det(A) = 2, what is det(B)?

(a) −4 (b) −2 (c) −1
2

(d) 2 (e) 4

12. Let A be a 2018 × 2018 lower triangular matrix. All the diagonal entries of A are
2
i
. What is the determinant of A?

(a) 1
2

(b) 22018

i
(c) 22018i (d) −22018 (e) −22018i
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13. The following two commands are entered into Matlab:

A = [4 2 1 0 5; 0 1 2 1 0; 0 0 -2 0 10; 0 0 0 3 1; 0 0 0 0 1]

det(A)

What is the output?

(a) −24 (b) −7 (c) 0 (d) 7 (e) 50

14. The following two commands are entered into Matlab:

A = [0 1 1; 1 0 1; 1 1 0]

e = eig(A)

What is the output?

(a) a column vector containing -1.0000, -1.0000, -2.0000

(b) a column vector containing 1.0000, 1.0000, 2.0000

(c) a column vector containing 1.0000, -1.0000, -2.0000

(d) a column vector containing -1.0000, -1.0000, 2.0000

(e) a column vector containing 2018, 2018, 2018
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15. Which of the following vectors

1.

1
2
2

 2.

1
2
1

 3.

−2
1
1


are eigenvectors for the matrix

A =

1 1 1
2 2 2
2 1 3

 .
(a) All of them (b) Only 1. (c) Only 1 and 2 (d) Only 2 and 3

(e) Only 1 and 3

16. For a 3× 3 matrix A, you are given the following information:

A

−1
0
1

 =

−2
0
2

 , A

 1
−1
4

 =

−2
2
−8

 , A

−1
1
1

 =

−3
3
3


What diagonal matrix is A similar to?

(a)

2 0 0
0 −2 0
0 0 3

 (b)

−2 0 0
0 −2 0
0 0 3

 (c)

0 0 0
0 2 0
0 0 3


(d)

3 0 0
0 −2 0
0 0 −2

 (e) Not enough information given

McMaster U. Math 1B03 Fall 2018 (Final Exam) Page 9 of 21



McMaster U. Math 1B03 Fall 2018 (Final Exam) Page 10 of 21

17. Let

A =

[
1 −2
1 3

]
What is the eigenvalue associated to the eigenvector x =

[
−1 + i

1

]
?

(a) 2 (b) 2 + i (c) 2− i (d) i (e) 4 + i

18. Given z1 = 4
(
cos
(
π
3

)
+ i sin

(
π
3

))
and z2 = 2

(
cos
(
π
9

)
+ i sin

(
π
9

))
compute z1

z2
.

(a) 2(cos
(
2π
9

)
+ i sin

(
2π
9

)
)

(b) 4(cos
(
4π
6

)
+ i sin

(
4π
6

)
)

(c) cos
(
π
2

)
+ i sin

(
π
2

)
(d) cos(π) + i sin(π)

(e) cos
(
π
9

)
+ i sin

(
π
9

)
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19. On the continent of Pangea, Tyrannosaurus Rexes and Velociraptors battle for re-
sources. Suppose that their populations are modeled by the differential equations

y′1 = 4y1 − 5y2

y′2 = −2y1 + y2

where y1 = y1(t) is the size of the T. Rex population at time t and y2 = y2(t) is the
Velociraptor population at time t. If one of the solutions is[

y1(t)
y2(t)

]
= 3

[
−5
2

]
eat + 2018

[
1
1

]
ebt,

then what is the value of a and b?

(a) a = −1 and b = 6

(b) a = −6 and b = 1

(c) a = −6 and b = −1

(d) a = 6 and b = 1

(e) a = 6 and b = −1
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20. Let θ be the angle between (1, 0, 2, 1) and (1, 2, 0, 1) in R4. What is cos (θ)?

(a) 1
2

(b) 1
3

(c) 2 (d) 0 (e) None of the above.

21. Suppose u = (1, u2) and v = (v1, 4) are two vectors in R2. If 2u − 3v = (−7,−8),
what are the values of u2 and v1?

(a) u2 = 2018 and v1 = 2018

(b) u2 = 4 and v1 = 2

(c) u2 = 2 and v1 = 3

(d) u2 = −2 and v1 = 1

(e) Not enough information.

22. Let u = (1, 1, 1) and a = (1, 2, 2). What is projau?

(a) (0, 0, 0) (b) 5
9
(1, 1, 1) (c) 5

9
(1, 2, 2) (d) 5

3
(1, 1, 1) (e) 5

3
(1, 2, 2)
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23. What is the area of the triangle in R2 with vertices at (2, 0), (3, 4), and (−1, 2)?

(a) 2 (b) 5 (c) 4 (d) 14 (e) 7

24. Let u and v be vectors of Rn, and consider the following three expressions:

(i) (2018u) · (v ·w) (ii) (u · v)− 2018 (iii) 2018‖v × u‖.

Which of these expressions makes sense mathematically?

(a) (i) and (ii) only.

(b) (ii) only.

(c) (ii) and (iii) only.

(d) (iii) only.

(e) All of them.
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25. Let L2,2 be the set of all 2×2 invertible matrices with the usual scalar multiplication,
but with a new vector addition operation given by:

if u = A ∈ L2,2 and v = B ∈ L2,2, then u + v = AB.

(That is, our “addition” in L2,2 is matrix multiplication.) Recall the following axiom
of a vector space V :

Axiom 4. There is an object 0 in V , called the zero vector for V , such that
0 + u = u + 0 = u for all u in V .

What element of L2,2 is the zero vector with respect to the operation of addition as
defined above?

(a)

[
0 0
0 0

]
(b) I2 (c) A−1 (d)

[
0 −1
−1 0

]
(e) There is no such element.

26. Consider the following set

W =

{[
a b
0 c

] ∣∣∣∣ a, b, c ∈ R
}
.

That is, W is a subset of the vector space M2,2 (all 2× 2 matrices) consisting of all
the upper triangular matrices. Which statement is true about W?

(a) W is a subspace of M2,2.

(b) W is closed under addition, but not closed under scalar multiplication.

(c) W is closed under scalar multiplication but not closed under addition.

(d) W is not closed under scalar multiplication and not closed under addition.
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27. Consider the following three vectors in R3:

u1 =

1
1
0

 u2 =

1
0
1

 u3 =

 4
−2
6

 .
Which of the following statements is true about S = {u1,u2,u3}?

(a) S is linearly independent and span(S) = R3.

(b) S is linearly independent and span(S) 6= R3.

(c) S is not linearly independent and span(S) = R3.

(d) S is not linearly independent and span(S) 6= R3.
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28. Let
p1(t) = 1 + x p2(t) = 1 + x2 p3(t) = x+ x2.

The set B = {p1(t),p2(t),p3(t)} is a basis for the vector space P2, the set of all
polynomials of degree at most two.

Let p(t) = 2− x+ x2. Find the coordinates of p(t) with respect to the basis B.

(a) (1,−1, 2) (b) (0, 2,−1) (c) (0, 2, 2) (d) (2,−1, 0) (e) (−1, 1, 3)
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29. Let V = span{v1,v2,v3} be a subspace of R4 where

v1 =


1
2
2
0

 v2 =


3
1
2
0

 v3 =


−2
1
0
1

 .
The Gram-Schmidt process can find an orthogonal basis u1,u2, u3 of V . What is
u3?

(a)


2
−1
0
0

 (b)


3
1
2
0

 (c)


2018
2018
2018
2018

 (d)


2
−1
0
1

 (e)


0
0
0
1


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30. A n × n matrix A is called orthogonal if A−1 = AT . Consider the following
statements about orthogonal matrices:

(1) The n column vectors of A are all orthogonal with each other.

(2) For every orthogonal matrix A, det(A) = 1 or −1.

(3) For any two vectors u,v ∈ Rn, u · v = (Au) · (Av).

Which statements are true? [Hint: Note that u · v = uTv if we view u and v as
column vectors.]

(a) (1) and (2) only

(b) (1) and (3) only

(c) (2) and (3) only

(d) All are true.

(e) None are true.
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31. The matrix A is row equivalent to the matrix B:

A =

 1 2 −1 4
0 1 −2 3
−1 0 −3 −2

 , B =

1 0 3 −2
0 1 −2 3
0 0 0 0


What is a basis for Nul(A)?

(a)


2
−3
0
1

 ,

−3
2
1
−0

 (b)


1
0
3
−2

 ,


0
1
−2
3

 (c)

 1
0
−1

,

2
1
0



(d)

1
0
0

,

0
1
0

 (e)


1
2
−1
4

 ,

−1
0
−3
2



32. Using A and B as in the Question 31, what is a basis for Row(A), the column space.

(a)


2
−3
0
1

 ,

−3
2
1
−0

 (b)


1
0
3
−2

 ,


0
1
−2
3

 (c)

 1
0
−1

,

2
1
0



(d)

1
0
0

,

0
1
0

 (e)


1
2
−1
4

 ,

−1
0
−3
2


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33. Let u and v be orthogonal vectors in R3. Which of the following statements are
true:

(1) span{u,v,u× v} = R3.

(2) The set {u,v,u× v} is a linearly independent set of vectors in R3.

(a) (1) is false and (2) is false.

(b) (1) is true and (2) is false.

(c) (1) is false and (2) is true.

(d) (1) is true and (2) is true.

34. Which of the following statements are true?

(1) If W is a subset of a vector space V such that the zero vector 0 belongs to W ,
then W is a subspace of V .

(2) For any vector space V , the set {0} is a subspace of V .

(a) (1) is false and (2) is false.

(b) (1) is true and (2) is false.

(c) (1) is false and (2) is true.

(d) (1) is true and (2) is true.

35. Which of the following statements are true?

(1) Any basis for R2018 contains exactly 2018 vectors.

(2) If span{v1, . . . ,vt} = V , then {v1, . . . ,vt} are linearly independent in V .

(a) (1) is false and (2) is false.

(b) (1) is true and (2) is false.

(c) (1) is false and (2) is true.

(d) (1) is true and (2) is true.

McMaster U. Math 1B03 Fall 2018 (Final Exam) Page 20 of 21



McMaster U. Math 1B03 Fall 2018 (Final Exam) Page 21 of 21

36. Which of the following statements are true?

(1) If {u1, . . . ,un} is an orthonormal basis for a vector space V , then ||ui|| = 1 for
all i = 1, . . . , n.

(2) Every orthogonal basis of a vector space V is also an orthonormal basis for V .

(a) (1) is false and (2) is false.

(b) (1) is true and (2) is false.

(c) (1) is false and (2) is true.

(d) (1) is true and (2) is true.

37. Which of the following statements are true?

(1) If λ an eigenvalue of a 4 × 4 matrix A, then the geometric multiplicity of λ
equals (4− rank(λI4 − A)).

(2) If A is an 2018× 2018 matrix such that Ax = 0 has exactly one solution, then
rank(A) = 2018.

(a) (1) is false and (2) is false.

(b) (1) is true and (2) is false.

(c) (1) is false and (2) is true.

(d) (1) is true and (2) is true.

38. Who was your favourite Math 1B03 instructor?

(a) Adam

(b) Adam Van Tuyl

(c) Dr. Adam

(d) Professor Van Tuyl

(e) All of the above [This is the correct answer!]

END OF TEST PAPER

McMaster U. Math 1B03 Fall 2018 (Final Exam) Page 21 of 21


