

NAME: Solutions

STUDENT NUMBER: _____

MATH 3V03 - Midterm 1**McMaster University****October 8, 2015****DR. ADAM VAN TUYL**

Instructions: Answer all questions in the space provided. If you need more room, answer on the back of the page. Where appropriate, you must provide clear explanations.

You are *not* allowed to use a calculator. If a question involves a calculation you may leave it in an unexpanded form, e.g., you can write 5^4 instead of 625.

If doubt exists as to the interpretation of any question, you are urged to submit with the answer paper a clear statement of any assumptions made.

Page	Possible	Received
2	10	
3	10	
4	10	
5	10	
Total	40	

1. [10 pts] In the space provided, match each term with its definition. (Note: There are more definitions than terms.)

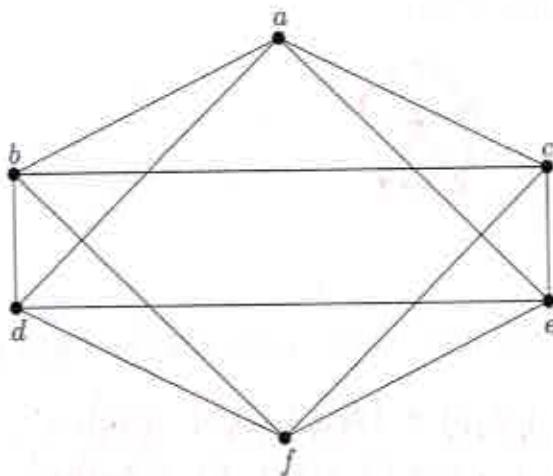
Terms.

- G Pseudograph
- L Multigraph
- A Tree
- N Forest
- H Bipartite graph
- F k -regular
- B Girth
- D Diameter
- E Euler circuit
- J Hamilton cycle

Definitions.

- A. A connected graph that contains no subgraph isomorphic to a cycle.
- B. The length of the shortest cycle in the graph.
- C. An edge of G whose removal disconnects G .
- D. The maximum distance between any two vertices of G .
- E. A circuit that contains every edge of G .
- F. A graph where every vertex has degree k .
- G. A graph where multiple edges and loops are allowed.
- H. A graph with chromatic number ≤ 2 .
- I. A graph which has chromatic number k .
- J. A cycle in G that contains every vertex of G .
- K. A trail whose endpoints are the same vertex.
- L. A graph where multiple edges are allowed but not loops.
- M. A trail ~~that contains every edge and every vertex of G~~ with the property
that no vertex is repeated.
- N. A graph that contains no cycle.

2. Use the following graph to answer the questions found below.



(i) [2pts] Find the degree of each vertex.

(ii) [2pts] Compute $\chi(G)$.

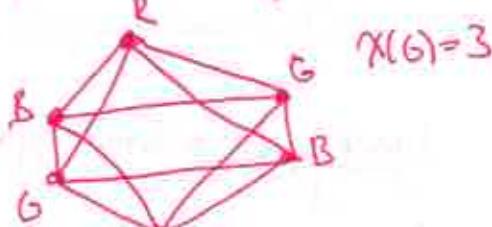
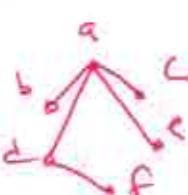
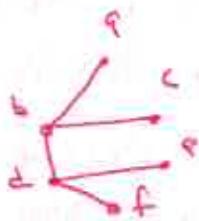
(iii) [2pts] Find a spanning tree of the above graph. have

* (iv) [2pts] Does the above graph an Euler circuit? If so, write out the path/circuit, or explain why no such path/circuit exists. Repeat the question for a Hamilton ~~circuit~~ cycle

* (v) [2pts] ~~Find a decomposition of G into cycles~~ Decompose G into three isomorphic cycles.

(i) every vertex has degree 4

(ii)



(iii) many possibilities

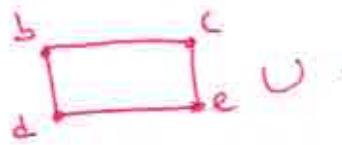
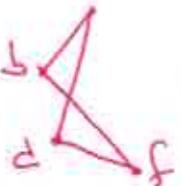
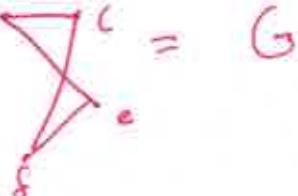
(iv) Yes Euler Circuit

abcedfcaabdfca

Yes Hamilton Cycle

abdfeca

(v)



3. [2pts] Draw the following two graphs: (i) $K_{2,3}$, (ii) W_5 .

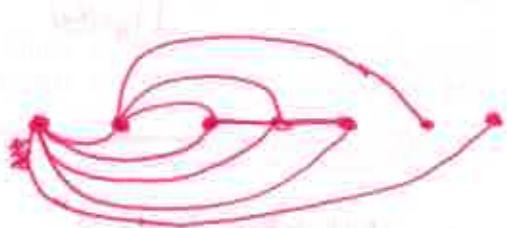
4. [4pts] Is the sequence $(5, 4, 4, 3, 2, 1, 1)$ graphic? If yes, draw a graph with this degree sequence. If no, justify your answer.

$$(5, 4, 4, 3, 2, 1, 1) \text{ graphic} \Leftrightarrow (3, 3, 2, 1, 0, 1) = (3, 3, 2, 1, 1, 0) \text{ graphic}$$

$$\Leftrightarrow (2, 1, 0, 1, 0) = (2, 1, 1, 0, 0) \text{ graphic}$$

Because $(2, 1, 1, 0, 0)$ is graphic, e.g.
original graph is graphic

Here is a graph with this degree seq.



5. [4pts] Prove that if $m \geq 3$ and m is odd, then the complete bipartite graph $K_{3,m}$ cannot be decomposed into two isomorphic subgraphs.

By the Handshaking Theorem, $K_{3,m}$ has $\frac{3 \cdot m + m \cdot 3}{2} = 3m$ edges.
If m is odd, then $3m$ is odd.

Thus, $K_{3,m}$ cannot be decomposed into two isomorphic subgraphs, because each graph would have to have the same # of edges, i.e. $3m$ would have to be divisible by 2.

6. [2pts] Give an example of a graph that is critical with $\chi(G) = k$, but G contains no subgraph isomorphic to K_k .

$\chi(C_5) = 3$ but it has no subgraph isomorphic to K_3

7. [4pts] Suppose that G is a graph with $p = 10$ vertices and $q = 16$ edges. Suppose that each vertex of G either has degree 3 or degree 4. How many vertices have degree 3 and how many have degree 4?

Let $p_3 = \# \text{ of vertices of degree 3}$
 $p_4 = \# \text{ of vertices of degree 4}$.

So $p_3 + p_4 = p = 10$ and by the Handshaking Theorem, $3p_3 + 4p_4 = 2 \cdot 16 = 32$.

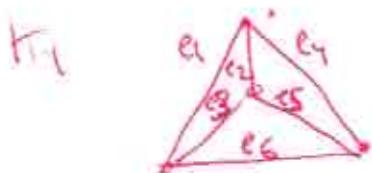
$$\begin{aligned} \text{So } p_3 + p_4 &= 10. \text{ Thus } 3(10 - p_4) + 4p_4 = 32 \\ &\Rightarrow 30 + p_4 = 32 \\ &\Rightarrow p_4 = 2 \end{aligned}$$

Thus $\boxed{p_4 = 2 \text{ and } p_3 = 8}$

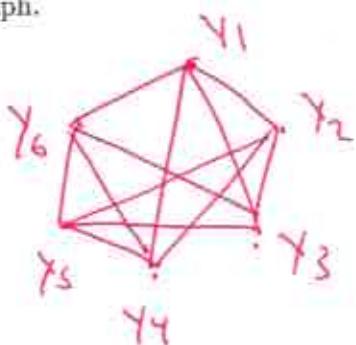
8. [4pts] Given a graph $G = (V_G, E_G)$ on p vertices and q edges $E_G = \{e_1, \dots, e_q\}$, we can make a new graph $L(G) = (V_{L(G)}, E_{L(G)})$, called the line graph, as follows. Let $V_{L(G)} = \{y_1, \dots, y_q\}$ and let

$$E_{L(G)} = \{y_i y_j \mid \text{edge } e_i \text{ is adjacent to } e_j\}.$$

Show that $L(K_4)$, the line graph of K_4 , is a regular graph.



$L(K_4)$



In $L(K_4)$, we see every vertex is degree 4.
 So $L(K_4)$ is 4-regular.

