AN APPENDIX TO A PAPER OF CATALISANO, GERAMITA, GIMIGLIANO: THE HILBERT FUNCTION OF GENERIC SETS OF 2-FAT POINTS IN $\mathbb{P}^{1} \times \mathbb{P}^{1}$

ADAM VAN TUYL

Abstract

Implicit in the paper of Catalisano, Geramita, and Gimigliano [1] is a formula for the Hilbert function of generic sets of 2-fat points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We make this result explicit in this note.

We shall use the definitions and notation as found in [1].
Let d_{1}, d_{2} be two positive integers and consider the fat point scheme $W=d_{1} Q_{1}+$ $d_{2} Q_{2}+2 R_{1}+\cdots+2 R_{s} \subseteq \mathbb{P}^{2}$ where $Q_{1}, Q_{2}, R_{1}, \ldots, R_{s}$ are $s+2$ points in generic position. Proposition 2.1 of [1] describes some properties of the Hilbert function of W. Furthermore, this proposition is used (see [1, Corollary 2.2]) to compute the dimensions of the secant varieties of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ embedded into $\mathbb{P}^{\left(d_{1}+1\right)\left(d_{2}+1\right)-1}$ by the morphism given by $\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\left(d_{1}, d_{2}\right)$.

By Terracini's Lemma (see $\S 1$ of [1]) there is a relationship between the dimensions of these embedded varieties and the Hilbert functions of generic sets of 2-fat points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Thus, implicit in [1, Corollary 2.2] is a formula for $H\left(Z,\left(d_{1}, d_{2}\right)\right)$ when $Z=2 P_{1}+\cdots+2 P_{s} \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a generic set of 2-fat points and $\left(d_{1}, d_{2}\right) \geq(1,1)$.

Because of the recent work on the Hilbert functions of points (for the reduced case, see $[2,6]$ and for the nonreduced case, see $[3,4])$ in multiprojective spaces, it is of interest to have an explicit description of this formula. In fact, by coupling [1, Proposition 2.1] with a result from [5], we can describe $H(Z,(i, j))$ for all $(i, j) \in \mathbb{N}^{2}$.
Theorem 1. Suppose $Z=2 P_{1}+\cdots+2 P_{s} \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a generic set of 2-fat points. Then

$$
H(Z,(i, j))= \begin{cases}\min \{(i+1), 2 s\} & \text { if } j=0 . \\ \min \{(j+1), 2 s\} & \text { if } i=0 . \\ \min \{(i+1)(j+1), 3 s\} & \text { if }(i, j) \geq(1,1) \text { and } \\ 3 s & (i, j) \notin\{(2, s-1),(s-1,2)\} \\ & \text { if } s \equiv 0(\bmod 2) \text { and } \\ 3 s-1 & (i, j) \in\{(2, s-1),(s-1,2)\} \\ & \text { if } s \equiv 1(\bmod 2) \text { and } \\ & (i, j) \in\{(2, s-1),(s-1,2)\}\end{cases}
$$

Proof. Suppose that $(i, j) \in \mathbb{N}^{2}$ with $j=0$. Let $\pi_{1}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be the projection morphism given by $\pi_{1}(P \times Q)=P$. If we set $Z_{1}:=\pi_{1}(Z) \subseteq \mathbb{P}^{1}$, then by [5, Lemma

[^0]4.1] we have
$$
H(Z,(i, 0))=H\left(Z_{1}, i\right) \text { for all } i \in \mathbb{N}
$$

Because the support of Z is in generic position, the first coordinates of the points P_{1}, \ldots, P_{s} must all be distinct. Thus Z_{1} is a set of s double points in \mathbb{P}^{1}, and hence

$$
H(Z,(i, 0))=H\left(Z_{1}, i\right)=\min \{(i+1), 2 s\} \text { for all } i \in \mathbb{N} .
$$

Notice that if $(i, j) \in \mathbb{N}^{2}$ with $i=0$, then the proof is the same except that the projection morphism $\pi_{2}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ defined by $\pi_{2}(P \times Q)=Q$ is used.

So, we need to compute $H(Z,(i, j))$ when $(i, j) \geq(1,1)$. By [1, Theorem 1.1] (and the discussion at the start of $\S 2$ in [1]) we have

$$
\begin{align*}
H(Z,(i, j)) & =\operatorname{dim}_{k} R_{(i, j)}-\operatorname{dim}_{k}\left(I_{Z}\right)_{(i, j)} \\
& =(i+1)(j+1)-\operatorname{dim}_{k}\left(I_{W}\right)_{i+j} \tag{1}
\end{align*}
$$

where I_{W} is the defining ideal in $S=k[x, y, z]$ of the fat point scheme

$$
W=i Q_{1}+j Q_{2}+2 R_{1}+\cdots+2 R_{s} \subseteq \mathbb{P}^{2}
$$

and $Q_{1}, Q_{2}, R_{1}, \ldots, R_{s}$ are $s+2$ points in generic position.
The value of $H(W, i+j)$ can be computed using [1, Proposition 2.1]. In particular,

$$
\begin{equation*}
H(W, i+j)=\min \left\{\operatorname{dim}_{k} S_{i+j}, \operatorname{deg} W\right\} \tag{2}
\end{equation*}
$$

except when

$$
s=2 a+1 \text { and }(i, j)=(2,2 a) \text { or }(2 a, 2) .
$$

(Note that although [1, Proposition 2.1] assumes that $i \geq j$, if $(i, j) \in \mathbb{N}^{2}$ with $i<j$, then we can swap the roles of i and j to compute $H(W, i+j)$.) In the two exceptional cases, [1, Proposition 2.1] demonstrated that

$$
\begin{equation*}
h^{0}\left(\mathcal{I}_{W}(i+j)\right)=\operatorname{dim}_{k}\left(I_{W}\right)_{i+j}=1 \tag{3}
\end{equation*}
$$

Using the fact that $\operatorname{deg} W=3 s+\binom{i+1}{2}+\binom{j+1}{2}$, we can use (2) and (3) to derive the following formula for $\operatorname{dim}_{k}\left(I_{W}\right)_{i+j}$:
$\operatorname{dim}_{k}\left(I_{W}\right)_{i+j}= \begin{cases}\max \{0,(i+1)(j+1)-3 s\} & \text { if }(i, j) \geq(1,1) \text { and } \\ 0 & (i, j) \notin\{(2, s-1),(s-1,2)\} . \\ & \text { if } s \equiv 0(\bmod 2) \text { and } \\ 1 & (i, j) \in\{(2, s-1),(s-1,2)\} . \\ & \text { if } s \equiv 1(\bmod 2) \text { and } \\ & (i, j) \in\{(2, s-1),(s-1,2)\} .\end{cases}$
We now substitute the above values into (1). If $(i, j) \geq(1,1)$ and $(i, j) \notin$ $\{(2, s-1),(s-1,2)\}$, then

$$
\begin{aligned}
H(Z,(i, j)) & =(i+1)(j+1)-\max \{0,(i+1)(j+1)-3 s\} \\
& =\min \{(i+1)(j+1), 3 s\}
\end{aligned}
$$

When $(i, j) \in\{(2, s-1),(s-1,2)\}$, then $(i+1)(j+1)=3 s$. So, if $s \equiv 0(\bmod 2)$, then

$$
H(Z,(i, j))=3 s-\operatorname{dim}_{k}\left(I_{W}\right)_{i+j}=3 s
$$

However, if $s \equiv 1(\bmod 2)$, then

$$
H(Z,(i, j))=3 s-\operatorname{dim}_{k}\left(I_{W}\right)_{i+j}=3 s-1
$$

This completes the proof.
Acknowledgments. I would like to thank A.V. Geramita for his suggestion to write this appendix. As well, I would like to acknowledge the financial support provided by NSERC.

References

[1] M.V. Catalisano, A.V. Geramita, A. Gimigliano, Higher Secant Varieties of Segre-Veronese varieties. (2004) Preprint.
[2] S. Giuffrida, R. Maggioni, A. Ragusa, On the postulation of 0-dimensional subschemes on a smooth quadric. Pacific J. Math. 155 (1992) 251-282.
[3] E. Guardo, Fat point schemes on a smooth quadric. J. Pure Appl. Algebra 162 (2001) 183208.
[4] E. Guardo, A. Van Tuyl, Fat Points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and their Hilbert functions. Canad. J. Math 56 (2004) 716-741.
[5] J. Sidman, A. Van Tuyl, Multigraded regularity: syzygies and fat points. (2004) math. AC/0405247
[6] A. Van Tuyl, The border of the Hilbert function of a set of points in $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}$. J. Pure Appl. Algebra 176 (2002) 223-247.

Department of Mathematical Sciences, Lakehead University, Thunder Bay, On, P7B 5E1, Canada

E-mail address: avantuyl@sleet.lakeheadu.ca

[^0]: 1991 Mathematics Subject Classification. 13D40,14M05.
 Key words and phrases. Hilbert function, fat points, multiprojective space.
 Updated: August 3, 2011.

