Lecture X: Splittable Ideals (March 21, 2006)
SPEAKER AND NOTES BY: JING HE

First, we want to introduce splittable ideals. Let G(I) denote the minimal generators of I.

Definition 1. A monomial ideal I is splittable if I is the sum of two nonzero monomial ideals
J and K, that is, I = J + K, such that

(1) G(I) is the disjoint union of G(J) and G(K).
(2) there is a splitting function

G(JNK)—G(J) x G(K)
w = (p(w), P(w))
satisfying
(a) forallw € G(JNK),w = lem(¢(w), ¢ (w))
(b) for every subset S C G(JNK), both lem(¢(S)) and lem(4(.S9)) strictly divide lem(S).

If J and K satisfy the above properties, then we shall say I = J + K is a splitting of I.

We want to find splittings of the monomial ideal I since we can then apply the following
result:

Theorem 2 (Eliahou-Kervaire, Fatabbi). Suppose I is a splittable monomial ideal with splitting
I1=J+4+ K. Then for all 1,57 >0,

Bii(I) = Bij(J) + Bij (K) + Bi-1,(J N K).
We now turn our attention to edge ideals.

Definition 3. Let G be a simple graph with vertex set Vg = {z1,...,z,} and edge set Eg.
The edge ideal of G, denoted Z(G) is the ideal

I(G) = {ziz; | {=i,z;} € Eg} Cklz1,...,20].

Note an edge ideal is an ideal whose generators are square-free monomials of degree 2.

Let G be a simple graph with edge ideal Z(G) and e = uwv € Eqg. If we set
J = (w) and K =Z(G \ e),

then Z(G) = J 4+ K. In general this may not be a splitting of Z(G). The goal of this lecture is
to determine when J and K give a splitting of Z(G), and furthermore, how this splitting can be
used to ascertain information about the numbers §; ;(Z(G)). We begin by assigning a name to
an edge for which there is a splitting.

Definition 4. An edge e = uv is a splitting edge of G if J = (uv) and K = Z(G\ e) is a splitting
of Z(G).

We will prove the following theorem:



2

Theorem 5. An edge e = uv is a splitting edge of G if and only if N(u) C (N(v) U {v}) or
N(v) C (N(u) U{u})

Note N(u) is the the neighborhood of u. We illustrate the theorem using an example.

Example 6. Consider the graph G:

In G the edge z1x2 is a splitting edge (we remove the leaf z1z5 from the tree G).

To see Theorem 1,

I = (z1%2,x213, 324, L3T5, T2T6)
J = (181.132) <+ leaf
K = (x93, 7374, 23%5,T2T¢)

Then I = J+ K. Because N(z1) = {z2} C (N(z2) U{z2}) = {z2,z3, %6}, {1, 22} is a splitting
edge.

We will use the Definition to check that this is a splitting directly.
Note: If M, N are monomial ideals, M N N = {lem(m1, ma)|m1 € M, mo € N}.

Since J N K = (z122%3, T1X2X3T4, T1T2T3T5, T1T2Tg), we have J N K = (r1z9w3, T1T2%6)-
Hence

g(J N K) {$1I2$3,J;1(L‘2.’E6},
Gg(J) = {zmumz},
G(K) = {zow3,x3%4,T3T5,T2T6},

G(J) xG(K) = {(r172,7273), (T172,T374), (T122, T375), (7172, T2Ts)}
We define our splitting function G(J N K) — G(J) x G(K) as follows:
T17273 > (T172, T173), (T1T2T3) = 172, Y(T1T2T3) = TaT3

T122x6 — (X122, Tows), P(T12226) = T1%2, Y(T12T2T6) = ToT6
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For example, just let S = {z12923, z12976 }, lem(S) = {z1x97326 }, P(S) = {f(T12273), P(T17976) } =
{z129, 122}, 1.e. ¢(S) = {z122}. Obviously lem(¢4(S)) divides lem(S). Readers can show
lem(#(S)) divides lem(S) by yourself.

Lemma 7. Let e = uv € Eg. Set N(u) := N(u)\{v} = {u1, -+ ,un} and N(v) := N(v)\{u} =
{v1,--+ ,um}. Then

JﬂK:U'U(('U/l,"' s Up,y U1yt ,’Um) +I(H))

where T(H) is the edge ideal of H = G \ {u,v,u1, -+ ,Un, V1, "+ ,Um}-

Example 8. See the same graph in the previous example:

Ife= T1T9 € Eg,N(xl) = N(.’L‘l) \ {.’L‘Q} = (0,]\7(3:2) = N(.’I?Q) \ {.’L‘l} = {$3,$6},I(H) = {O}
Use the above lemma, we have the same result we deduced before, i.e.

JNK = (EliL‘Q(.’Eg,(EG) = (.131:[;2.%‘3,3311‘21‘6).

Corollary 9. Let e =uv € Eg, J = (uv) and K =Z(G \ e). Then

GJINK) = {uvuu; € Nu)\ (N(u) N N(v))} U {uvvyv; € N(v) \ (N(u) N N(v))}
€ (N V

U{uvzi| 2 (u) N N(v))} U{uvm|m € Z(H)}.
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Example 10. Using the same graph as before,

1

Ig

if e = z122, then J = (z122), and K = (2223, T324, 325, 2@6). We have I(H) =
N(zg) = {z3,26}, then N(z1) \ (N(z1) N N(z2)) = 0, N(z2) \ (N(z1) N N(z2)) =
I(H) = (0) So g(JﬂK) = .’L‘l.’L‘Q(:L‘:),,.’L‘G)

Now we give the proof of Theorem 5 using the previous lemmas.

Proof. (of Theorem 5) Without loss of generality, we shall assume that N(u) C (N(v) U {v}).
This condition and Corollary 3.3 then imply that
G(JNK) = {uvv; | v; € N(v)} U {uvm | m € Z(H)}.
To show that e = uw is splitting edge, it suffices to verify that the function
G(JNK)—G(J) xG(K)
defined by
©0.1) o (46, 9) = {

(uv,vv;), if w = uvv;
(uv,m), ifw=wuvm
is a splitting function satisfying conditions (a) and (b) of Definition 2.1. Indeed, condition (a)

1s immediate.

So, suppose S C G(JNK). From our description of G(JNK) it follows that all the elements of S
are divisible by uv. Thus lem(S) will also have this property. Furthermore, since lem(¢(s)) = uw,
it must be the case that uv strictly divides lcm(S) since lem(S) must have degree at least three.

Again it follows from our description of the generators that we can write S as
S = {uvviy, -+ ,uvvy, } U {uoma, -+ uvmg}
where {uvvy, -+ ,uvv;;} C N(v) and m; € Z(H). Thus, lem(S) = wvv;, v;, --vy; M. Tt is thus
clear that lem(1(S)) strictly divides lem(S). Condition (b) now follows.

(=)We prove the contrapositive. Suppose that e = uv is an edge such that N(u) ¢ (N(v) U
{v}) and N(v) € (N(u) U{u}). Hence, there exists vertices z and y such that uz,vy € Eg,
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but uy,vz ¢ Eg. We now show that no splitting function can exist. Suppose that there was a
splitting function

G(JNK) — G(J) x G(K).
Since G(J) = {uv} it follows that our splitting function has the form

w = ($(w), P(w)) = (uv,p(w))-

By Corollary it follows that uvz,uvy € G(J N K). By condition (a) of Definition 1, we must
have uvz = lem(p(uvz), Y(uwvx)) = lem(uv, P (uvz)). Thus ¢¥(uwvz) = z, vz, uz or uvz. But since
P(uvz) € G(K) and vz ¢ Eg, this forces ¥ (uvz) = uz. By a similar argument, ¢ (uvy) = vy.

Now consider the subset S = {uvz,uvy} C G(J N K). This set fails to satisfy condition (b)
of Definition 1 since lem(S) = lem((S)) = uvzy, contradicting the fact that this function is a
splitting function. Thus e = uwv is not a splitting edge. O

When e = uv is a splitting edge, we can derive the following identity for the graded Betti
numbers of J N K. The proof for the following two results can be found in the paper of Ha and
Van Tuyl [1]

Lemma 11. Let G be a simple graph with edge ideal Z(G) C R. Suppose that e = uv is a
splitting edge with N(u) C (N(v) U{v}). If N(v) = {v1, - ,vp},J = (uwv), and K =Z(G \ e),
then for 1> 1 and all j >0

Bir1,i(J NK) = Bij—2(R/((v1,--- ,va) + Z(H)))
where Z(H) is the edge ideal of H = G \ {u,v,v1,- -+ ,v,}.
Corollary 12. Under the same hypotheses as in the previous Lemma,

Birtj(JNK) =) (7) Bi-i-12(Z(H));

=0
here B_10(Z(H)) =1 and B_1;(Z(H)) =0 if j > 0.

By now applying the result of Eliahou-Kervaire and Fatabbi, we get

Theorem 13. Let e = wuv be a splitting edge of G, and set H = G \ (N(u) N N(v)). If
n=|N(u) UN(v)| —2, then for alli>1 and all j >0

BuTH) = By @@\ ) + 3 (7 )fitroaa (D)
=0
where f_10(Z(G)) =1 and f_1 ;(Z(H)) =0 if j > 0.

The above formula is recursive in the case that G is a forest since the subgraphs G\e and H
are forests, and a leaf is always a splitting edge.
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Corollary 14. Let e = uv be any leaf of a forest G. If degv = n, and N(v) = {u,v1, -+ ,vp—1},
then fori>1 and 7 >0
i
n—1
BAE@) = i@+ 3 (") rororgeanaT(E)
=0

where T = G\ e = G\ {u} and H = G\ {u,v,v1,-- ,vp—1}. Here f_19(Z(H)) = 1 and
B_1y(Z(H)) =0 if j > 0.
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