Lecture II: Kruskal-Katona Theorem (Jan. 17, 2006) SPEAKER: ADAM VAN TUYL Notes by: Jing He ### 1. F-Vector. Recall that if Δ is a simplicial complex on V, and if $F \in \Delta$, then F is a face. Also, dim F = |F| - 1, and dim $\Delta = \max_{F \in \Delta} \{\dim F\}$. **Definition 1.1.** If Δ is a simplicial complex, then set $$f_i = f_i(\Delta) = \text{number of faces of dimension } i.$$ **Remark 1.2.** $f_{-1} = 1$ since $\emptyset \in \Delta$ and dim $\emptyset = -1$. Also $f_0 = |V|$, the number of vertices. **Definition 1.3.** If dim $\Delta = d$, then the f-vector of Δ is the d-tuple $f(\Delta) = (f_0, f_1, \dots, f_{d-1})$. **Example 1.4.** Consider the simplicial complex Δ : The f-vector is then $f(\Delta) = (6, 9, 4, 1)$ since Δ has 6 vertices, 9 edges, 4 triangles (from the tetrahedron) and 1 tetrahedron. **Question:** What can be the f-vector of a simplicial complex? That is, if $(f_0, f_1, \ldots, f_{d-1})$ is a sequence of numbers, is there a simplicial complex Δ such that $f(\Delta) = (f_0, f_1, \ldots, f_{d-1})$? # 2. MACAULAY REPRESENTATIONS. Recall that the binomial coefficient $\binom{a}{b} = \frac{a!}{b!(a-b)!}$. We make the convention that $\binom{a}{b} = 0$ if a < b. **Lemma 2.1.** Let k be a positive integer. Then each $a \in \mathbb{N}$ can be written uniquely in the form $$a = {a_k \choose k} + {a_{k-1} \choose k-1} + \dots + {a_s \choose s} \text{ with } a_k > a_{k-1} > \dots > a_s \ge 1.$$ **Definition 2.2.** The sum above is called the k^{th} Macaulay representation of a. **Example 2.3.** (How to find a representation) Consider Pascal's "Rectangle" (Pascal's triangle but written as a rectangle): We use this rectangle to find the 4^{th} -Macaulay representation of a=23: In column 4, largest number ≤ 23 is $15 = {2+4 \choose 4} = {6 \choose 4}$. In column 3, largest number $\leq 23 - 15$ is $4 = {3+1 \choose 3} = {4 \choose 3}$. In column 2, largest number $\leq 23 - 15 - 4$ is $3 = {2+1 \choose 2} = {3 \choose 2}$. In column 1, largest number $\leq 23 - 15 - 4 - 3$ is $1 = \binom{1}{1}$. So the 4^{th} -Macaulay representation of a=23 is: $$23 = \binom{6}{4} + \binom{4}{3} + \binom{3}{2} + \binom{1}{1}.$$ **Definition 2.4.** Let $a = \binom{a_k}{k} + \cdots + \binom{a_s}{s}$ be the k^{th} -Macaulay representation of a. Define a function $(k) : \mathbb{N} \to \mathbb{N}$ by $$a \mapsto a^{(k)} = \begin{pmatrix} a_k \\ k+1 \end{pmatrix} + \begin{pmatrix} a_{k-1} \\ k \end{pmatrix} + \dots + \begin{pmatrix} a_s \\ s+1 \end{pmatrix}.$$ **Example 2.5.** $23^{(4)} = \binom{6}{5} + \binom{4}{4} + \binom{3}{3} + \binom{1}{2} = 6 + 1 + 1 + 0 = 8.$ **Lemma 2.6.** If $a \le b$, then $a^{(k)} \le b^{(k)}$. ### 3. Kruskal-Katona Theorem. Kruskal and Katona independently gave a characterization of the f-vectors of simplicial complexes. **Theorem 3.1** (Kruskal-Katona Theorem). The d-tuple $(f_0, f_1, \dots, f_{d-1})$ is the f-vector of a (d-1)-dimensional simplicial complex if and only if $0 \le f_{i+1} \le f_i^{(i+1)}$ for $0 \le i \le d-2$. **Example 3.2.** We saw (6, 9, 4, 1) was a f-vector. So, $f_1 \leq f_0^{(0)}$ should be true. Indeed, since $6 = \binom{6}{1}, 6^{(1)} = \binom{6}{2} = 15$, thus $9 \leq 6^{(1)} = 15$. Also, $4 \leq 9^{(2)}$, since $9 = \binom{4}{2} + \binom{3}{1}$ which implies $9^{(2)} = \binom{4}{3} + \binom{3}{2} = 7$. We will sketch out the main ideas of the proof. Our presentation is based upon P. Frankl's proof (his result is slightly more general). (\Leftarrow) We will show, via an example, how given a valid f-vector one constructs Δ such that $f(\Delta) = f$. **Definition 3.3.** Suppose $(a_1, \ldots, a_r), (b_1, \ldots, b_r) \in \mathbb{N}^r$. Then $(a_1, \ldots, a_r) >_{rlex} (b_1, \ldots, b_r)$ if right most nonzero entry of $(a_1 - b_1, \ldots, a_r - b_r)$ is negative. This is called the reverse lexicographical order, and is a total ordering on \mathbb{N}^r . **Example 3.4.** $$(3,2,1) >_{rlex} (4,9,2)$$ since $(3-4,2-9,1-2) = (-1,-7,-1)$. The vector f = (6, 8, 3) is a valid f-vector (check the details). Let $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ since $f_0 = 6$, implies we need 6 vertices. Now write out all two element subsets of V in reverse lexicographical order. i.e. $$v_{i_1}v_{j_1} > v_{i_2}v_{j_2} \Leftrightarrow (i_1, j_1) >_{rlex} (i_2, j_2).$$ These elements are: $v_1v_2, v_1v_3, v_1v_4, v_2v_4, v_3v_4, v_1v_5, v_2v_5, v_3v_5, v_4v_5, v_1v_6, v_2v_6, v_3v_6, v_4v_6, v_5v_6.$ Let Δ_1 =first $f_1 = 8$ elements of the above set, that is $$\Delta_1 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_1, v_5\}, \{v_2, v_5\}\}.$$ Now write out all three element subsets of V in reverse lexicographical order. These elements are $v_1v_2v_3, v_1v_2v_4, v_1v_3v_4, v_2v_3v_4, v_1v_2v_5, v_1v_3v_5, v_2v_3v_5, v_1v_4v_5, v_2v_4v_5, v_3v_4v_5, v_1v_2v_6, v_1v_3v_6, \\ v_2v_3v_6, v_1v_4v_6, v_2v_4v_6, v_3v_4v_6, v_1v_5v_6, v_2v_5v_6, v_3v_5v_6, v_4v_5v_6.$ Let Δ_2 =first $f_2 = 3$ elements of the above set, that is $$\Delta_2 = \{\{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}\}.$$ Set $\Delta = V \cup \Delta_1 \cup \Delta_2$. It can now be checked that Δ is indeed a simplicial complex, and that Δ has f-vector $f(\Delta) = (6, 8, 3)$. A picture of this simplicial complex is given below: (\Rightarrow) Let Δ be a (d-1) dimensional simplicial complex and let $$f_{i+1} = \binom{a_{i+2}}{i+2} + \dots + \binom{a_s}{s}.$$ be the $(i+2)^{th}$ -Macaulay expansion of f_{i+1} . Our goal is to prove for $i=0,\cdots,d-2$ If we can prove (3.1), then when then apply (i+1) to both sides of the above equation we get $$\left[\binom{a_{i+2}}{i+1} + \dots + \binom{a_s}{s-1} \right]^{(i+1)} = f_{i+1} \le f_i^{(i+1)}.$$ The first step at the proof is to "shift" the simplicial complex Δ , i.e. we replace Δ with Δ' such that $$f_i(\Delta') < f_i(\Delta)$$ where Δ' is in some sense more simple. The shift we need is given in the exercises. Let $\Delta_1 = \{F \setminus \{v_1\} \mid v_1 \in F \in \Delta, \text{ and dim } F = i+1\}$. Then $$f_i(\Delta) < f_i(\Delta_1) + f_{i-1}(\Delta_1).$$ To see this, if $G \in \Delta_1$ and dim G = i, then $G \subseteq F \setminus \{v_1\} \subseteq F \in \Delta$. So $G \in \Delta$ and $v_1 \notin G$. If $G \in \Delta_1$ and dim G = i - 1, then $G \subseteq F \setminus \{v_1\}$ for some $F \in \Delta$. But then $G \cup \{v_1\} \subseteq F \in \Delta$. So $G \cup \{v_1\} \in \Delta$, and $G \cup \{v_1\} \notin \Delta_1$, and thus it is not counted by $f_i(\Delta_1)$. One proceeds by doing induction on f_{i+1} and i. First, one shows that $f_i(\Delta) \geq {a_{i+2}-1 \choose i+1} + \cdots + {a_{s-1} \choose s-1}$. Then, by induction $$f_{i}(\Delta) \geq f_{i}(\Delta_{1}) + f_{i-1}(\Delta_{1})$$ $$\geq \left[\begin{pmatrix} a_{i+2} - 1 \\ i + 1 \end{pmatrix} + \dots + \begin{pmatrix} a_{s} - 1 \\ s - 1 \end{pmatrix} \right] + \left[\begin{pmatrix} a_{i+2} - 1 \\ i \end{pmatrix} + \dots + \begin{pmatrix} a_{s} - 1 \\ s - 2 \end{pmatrix} \right]$$ $$\geq \begin{pmatrix} a_{i+2} - 1 \\ i + 1 \end{pmatrix} + \dots + \begin{pmatrix} a_{s} \\ s - 1 \end{pmatrix}.$$ ### Problems from Lecture 2 - 1. Let Δ be a simplex, i.e., $\Delta = \langle F \rangle$ has a single facet. If dim $\Delta = d 1$, determine the f-vector of Δ . - 2. Let Δ be a simplicial complex on $\{x_1, \ldots, x_n\}$. For each $1 \leq j \leq n$, and each $F \in \Delta$, define $$S_{j}(F) = \begin{cases} F \setminus \{x_{j}\} \cup \{x_{1}\} & \text{if } x_{j} \in F, x_{1} \notin F, \text{ and } F \setminus \{x_{j}\} \cup \{x_{1}\} \notin \Delta \\ F & \text{otherwise} \end{cases}$$ Set $$S_j(\Delta) = \{S_j(F) \mid F \in \Delta\}.$$ - (a) Show $S_j(\Delta)$ is a simplicial complex for each j. - (b) Show $f_i(S_j(\Delta)) \leq f_i(\Delta)$ (If you read the paper by P. Frankl on the Kruskal-Katona Theorem, this is the method by which he simplifies the simplicial complex.)