Lecture VII: Minimal Free Resolutions (Feb. 28, 2006)
SPEAKER: ADAM VAN TUYL
NoTES BY: JING HE

Throughout this lecture I is a homogeneous ideal of R = k[z1,...,z,] where k is a field. Our
goal is to to describe the resolution of an ideal. The resolution encodes many invariants of I
and R/I.

1. SOME LINEAR ALGEBRA

Recall that a function 7' : R® — R™ is a linear transformation if T(7 + /) = T(7) + (V)
for all @, € R*, and T(c@) = ¢I'(7) for allc € R and 7 € R".

Theorem 1.1. If T : R" — R™ is a linear transformation, then there exists a m X n matriz A
such that T(c@) = AZ. Precisely

A=[Te) T(e) ~+ Tlen)]
where {e1,...,en} is the standard basis of R".
Example 1.2. Consider the linear transformation 7 : R? — R? given by

(15 ))-

1+ X2
4x1 + bxo

Then T 1 = L and T 0 = L . So
0 4 1 5
T I _ 11 I '
) 4 5 9
2. LINEAR ALGEBRA OVER POLYNOMIAL RINGS
If we replace R by R = k[z1,...,%,], we can derive similar results. Let
fi
R" = fi € R=k[z1,...,z,]
In
Note that R" is a free R-module under the operation
S 9f1 fi
gl : = : with g € R and : € R".

fn 9fn fn
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Definition 2.1. A function 7' : R® — R™ is an R-module homomorphism if T'(z + y) =
T(z) + (y) for all z,y € R". T(cz) = cT'(z) for all c € R and z € R"

Theorem 2.2. If T : R* — R™ is an R-module homomorphism, then there exists an m X n
matriz with entries in R such that T(z) = Az. In particular,

A=T() T(e) - T(e)]

where e; = | 1 | € R".

_0_

Example 2.3. If R = k[z,y, 2] and T : R® — R? is the R-module homomorphism given by

fi fiz + foz
T\ f = | —fiz + f3z
I3 —fox — f3y
then
bil z z 0 h
TV f =l -z 0 =z f2
I3 0 —z —y I3
3. BUILDING A MINIMAL FREE RESOLUTION
Suppose I = (Fp1,-.-,Fo4,) is an ideal of R. We can construct an R-module homomorphism
wo: R - I CR!
by
G1
G
.1 G2
%o : =G1Fo1 + -+ Gy Foge = [ Fo. Fop -+ Fog ] )
Gy )
0 Gto

Definition 3.1. Let M be a R-module and suppose {F1,...,F;} C M. A syzygy of Fi,...,F;
is a t-tuple. (G1,...,G:) € R! such that

GiFi+ -+ GF;, = 0.

We make some observations about the map q:



G, G,
kerpg = : ©o : =G1Fo1 +---+ Gy Fopy =0
Gty Gy,
= {all syzygies of Fy1,...,Fo4}
= first syzygy module of I.
(2) ker g is a finitely generated submodule of R%, i.e., there exists Fy1,---,F,,,such that
kerog =< Fy,...,F 4 >={G1F; + -+ Gy, Fy | Gi € R}.
(3) ker g is like the null space of matrix A, i.e.
Nul(A) = {7 € R" | A7 = 0}
We can now define a map ¢ : R"* — ker pg C R’ by
Gy Gy
1 : =GiF+ -+ Gy Fy = [ Fi, Fip - Fiy ]
G, G,
We make some further observations:

(1) ker ¢y is called the second syzygy module.
(2) ker ¢ measures the relations among the generators of ker .
(3) ker ¢y is finitely generated, i.e., there exist Fy1,...,Foy, € ker ¢ such that

kerpr =< Fgy,...,Fy;, >

We can repeat the above step to now create a map 9 : R — ker ¢; C R, In fact, we continue
to reiterate this process. Eventually, this process will stop because of the following theorem:

Theorem 3.2 (Hilbert Syzygy Theorem). If R = k[z1,...,%y], then there exists an | < n such
that ker p; =20, i.e., the jth syzygy module is 0.

4. THE RESOLUTION OF AN IDEAL

We now tie the above ideas together to describe the resolution of an ideal. Associated to any

ideal I C R = kl[z1,...,%,] is a minimal free resolution of the form
0 — Rt 24 Rl 2of . £ gl 2L gl 20 140
where
«l<n,

e Imy;y1 = ker ¢;, and



e each ; is represented by t;_1 X t; matrix with entries in R.

Definition 4.1. The ith Betti number of I, denoted 5;(I), equals ¢;, the rank of R appearing
in the ith step of the resolution. The number 3;(I) is the number of minimal generators of
ker ;1.

Example 4.2. Let R = k[z,y, 2] and I = (22,92, 2). Then the minimal resolution is

z y? z 0
—y2 —z2 0 z
2 2 2
T 0 -z —y 2,2
0—R — R? — B o

Example 4.3. Suppose Fi,..., F, is a regular sequence on R. If I = (Fy,..., F,), then the

minimal free resolution has form
n
1

0— RG) — RG2S ... 5 RG) 5 RG) 5 RG) T 0.

Note that we have omitted the maps (although they are easy to write down in this case). In
many situations we are primarily interested in the Betti numbers.

5. THE GRADED RESOLUTION

Return to the example I = (22,42, 2) in R = k[z,y, z]. The elements in each matrix defining
a map are in fact homogeneous elements. The degrees of these elements are also of interest. We
can modify the construction so that we can extract this information.

Definition 5.1. Let M and N be graded R-modules, i.e.

M= MadN=EPN,

1EZ 1€E7Z

An R-module homomorphism ¢ : M — N is graded of degree 0 if ¢(M,) C N, for all a.
i.e., degree a elements of M are mapped to elements of degree a of N.

Definition 5.2. If R = k[z1,...,2,], then the graded R-module shifted by a € N is R(—a)
where

R(-a)i = Ri—a,
that is, the degree 7 part of R(—a) equals the degree i — a part of R.

Example 5.3. 1 € R(—5) has degl = 5, since 1 € R(—5)5 = Rs_5 = Ry. Similarly, 2% + ¢ €
R(-5) has degz? + y? = 7, since 2 + y? € R(—5)7 = Ry.

Definition 5.4. Let dy,...,d; € N. Then
R(=d) ®...® R(=d;) = {(G1,...,G1) | Gi € R(—d;)}-
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Definition 5.5. (G1,...,G}) is homogeneous of degree d in R(—d1)®...®(—dy) if G; € R(—d;)q4
for each ¢

Example 5.6. (2 + 42, zzy) € R(—5) ® R(—4) is homogeneous of degree 7.

6. GRADED RESOLUTION CONSTRUCTION

Let I = (Fyq,...,Fos) be a homogeneous ideal with degree deg Fy; = dp ;. Define a map
0o : R(—do,1) ® R(—do2) © -+ ® R(—doi) — (Fo,1,---5 For0) € R

by

©o((G1,-..,Gt)) = G1Foa + -+ + Gy Fo 1.
Then the map ¢ has degree 0. To see this, note that if (G1,...,Gy,) is homogeneous of degree
din R(—dp1) ®...® R(—doy,) then degG; = d —dp,; in R. So

©((G1,...,Gyy)) = G1Fpq + - - + Gy, Fo 1, is homogeneous of degd.

One can show that ker g =< F;,...,F;, > is generated by homogeneous elements in
R(—dp,1) @ --- ® R(—dy,) of degree di1,...,d14,, respectively. Repeat the above ideas to get

a map
p1: R(=d11) @ @ R(—dy,) = ker o1 C R(—do1) ®--- & R(—doy,)
defined by
G1
(Gi,o G = [ By oo Fuy, |
Gy
Again, ker ¢ is generated by homogeneous elements. We continue to reiterate this process until
ker ¢; = 0 for some [ (which is guaranteed by the Hilbert Syzygy Theorem).

So, associated to any homogeneous ideal I C R = k[z1,...,%,] is a minimal graded free
resolution of the form

V_
0—F -5\, A SRS —0
where

o[ <n
® (; is a matrix with entries in R
® Fi=R(~di1) ®--- © R(~diy,)

Definition 6.1. The i, jth graded Betti number, denoted 3; ;(I), equals the number of times
R(—j) appears in F;. Equivalently, §; ;(I) is the number of minimal generators of degree j of
ker ©Yi—1-
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Problems from Lecture 7

1. Let F be a homogeneous polynomial of degree d in the polynomial ring R = k[z1, ..., zy].
If I = (F), then find the minimal free graded resolution of I.

2. Let R = k[z1, z2].
(2) Describe the minimal free graded resolution of I = (z1,z2).
(i4) Describe the minimal free graded resolution of I = (z¢,25) where a and b are any
positive integers.
(131) Let F and G be a regular sequence on R and suppose deg F' = a and degG = b.
Describe the minimal free graded resolution of I = (F,G). (Hint: Compare to part
(i0))
3. Let I = (z1x2,z2x3) in R = k[z1, T2, x3]. Describe the minimal free graded resolution of
1.



