Lecture VIII: Introduction to reduced simplicial homology (March 7, 2006)
SPEAKER: ADAM VAN TUYL
NoTES BY: JING HE

From last week: if I C R = k[z1,...,%,] is a homogeneous ideal, then associated to I is a
minimal free graded resolution of the form:

0 —s @R(_j)/jl,j(f) N @R(_j)ﬁl—l,j(f) e @R(_j)ﬂo,j(f) T —30
J J J
where f3; ;(I) is the i, jth graded Betti number of I.

Question Suppose I = I is the Stanley-Reisner ideal of a simplicial complex A. How is
Bi,j(Ia) related to A?

Mel Hochster found a connection using simplicial homology. We save the connection until the
next lecture. Today, we introduce the language of reduced simplicial homology.

1. ORIENTATION

A face of dimension ¢ is sometimes called a g-simplex. We put an orientation on each simplex.
An oriented 0-simplex is just a vertex [v]. An oriented 1-simplex is a directed edge [v1,v2] &

U1 V9

want to distinguish [v1,vs] from [ve, 1] &

U1 v2

We make the convention that [vi,vs] = —[ve,v1]. An oriented 3-simplex is a triangle with

vertices in some order.

Let [v1,v2,v3] denote the ordered vertices. Note that [v1,ve,vs] = [ve, vs,v1] = [v3,v1,v2] since
they all go in same direction around the triangle. Because the order of the vertices [v1,v3, v2] =

[v3,v2,v1] = [v2,v1,v3] go in the reverse direction, we set

[v1,v2,v3] = [v2,v3,v1] = [vs,v1,v2] = —[v1,v3,v2] = —[v3,v2,v1] = —[v2,v1, V3]
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Observe )
1 2 3
V1, V9, U3 if is an even permutation,
3 U2y . . p
i
[’UZ',’Uj,’Uk] =<
) 1 2 3 . .
—[v1,v2,v3] if is an odd permutation.
i 7 k

\
In general, if F' is a g-simplex whose vertices have been ordered

[vla V25 - - - a'Uq+1]
then
.
. 1 2 qg+1 . .
[v1,02,...,0g41] if | . is an even permutation,
i1 9 Tg+1
[vilaviza"'aviq+1]:< . ) 1
. q . .
—[v1,v2,. . vg41] i ' is an odd permutation.
\ 1 12 Zq_|_1

2. BOUNDARIES

The boundary of the 0-simplex [v] is empty, i.e.
oo([v]) = 0.
The boundary of the 1-simplex [v,v9] is
O ([vr,va]) = [v2] = [v1].

This is simply the formal difference of end point and initial point. The boundary of the 2-simplex
[v1,v9,v3] is

(92([1)1,’02,’03]) = [’122,’[)3] — [’01,’03] + [’01,’02].

Since —[v1, v3] = [v3,v1], notice that the “sum” corresponds to the boundary of the triangle by
traveling around the edges.

The boundary of the g-simplex [v1,v2,...,V441] is
q+1 '
B[22, 0g11]) = S (1 or, B s3]
i=1

where by ¥; we mean v; is removed.



Example 2.1. Consider the 3-simplex [v1,v2,vs,v4]. Then

83([7)1"02’”3"”4]) = [’1)2,1]3,’1)4] - [Ulav3,v4] + [’Ula'UZa'ULL] - [’1)1,’02,’03]-

U1

U2 U3

3. CHAINS AND CYCLES

Let k be a field and let Fy(A) denote all g-simplexes of A. Let kFa(A) be the vector space
over k whose basis elements are the oriented g-simplexes of F,(A). Elements of k¥4(2) are called
g-chains.

Example 3.1. Using the simplicial complex

(4
V9 U3
we have
F_i(A) = {6} ={[0]}
Fo(A) = {[v1]; [v2], [s]}
Fi(A) = {[v1, 2], [v2,v3], [v3,v1]}.
Thus, we get
pF-1a) — {c[0] | cek}=Q
KO = {e[on] + eolva] + esfvs] | i € QF = QF
KR = ferfor, 9] + ealva, vs] + calvs,v1] | i € Q) = QP

We make the convention that k() =0 for ¢ > dim A and ¢ < —1.

Fact. dimy, k%4(2) = |F,(A)| = # g-simplexes.

The boundary gives a map 0y : kFa(B) 5 kFa-1(8) a5 follows:

aq(z mi[vl,i, .. 7U(q—|—1),i]) = Z miaq([’ul,i, e aU(q—H),z’])



4
Example 3.2. Let A be as above. Then
o1, va] + 2[v2, v3] + 3[vs, v1] € kF1 ) is a 1-chain
Then
61(7[’1)1,’1)2] + 2[1}2, 1)3] + 3[1)3, ’Ul]) = 781([’01, ’UQ]) + 281([1)2, U3]) + 381([’03, ’01])

= ([va] = [v1]) + 2([vs] — [v2]) + 3([v1] — [v3])
= 7[’02] — 7[1]1] + 2[’03] — 2[’02] + 3[1)1] — 3[2)3]
= —4[v1] + 5[ve] — [v3] € EFo(A),

The elements of ker J; are called g-cycles. To see why this is an appropriate name, return to
the above example.

Example 3.3. Note that v = [v,ve] + [va,v3] + [v3,v1] € kF1(2) forms a cycle in A. Then
01(v) = 01 ([v1,v2]) + Oa([v2,vs]) + Os([vs, v1]) = [va] — [v1] + [vs] — [va] + [v1] — [vs] = 0.

So v is a in the kernel of 0;. In other words, a cycle is sent to 0.

Definition 3.4.

ker9, = group of g-cycles.
Imd, = group of (¢ — 1)-boundaries.

Theorem 3.5. For all g, Im 0y41 C ker 0.

Here is a the main idea behind the proof. Suppose v = [v1, V2, . . ., Vi1, Vgro] € kFer2(8) ig a
q+ q+

(¢ +1)-simplex. Then Jg+1(v) is the boundary of v. This boundary forms a “cycle” in A. Since

all cycles are sent to 0, we get

Bq(8q+1 (’U)) =0& Im3q+1 C ker aq.

Definition 3.6. The ¢** reduced homology of A over k is

_ kerd,
N Im3q+1 ’

Hy(A k)

The homology of A measures the “holes” in the simplicial complex. To see this, suppose
Hy(Ak) # 0 < ITmdyi1 G ker 9.

So, there is a g-chain that forms a “cycle” in A, but this g-chain is not the boundary of a
(g + 1)*-simplex, i.e. the boundary is there, but not the face itself.



Example 3.7. Consider A =
U1

(2] U3

(A)

Since we have no faces of dimension 2 or bigger, kf«(2) = ( for ¢ > 2. We have a series of maps

0 -2, 1) 21, prod) Doy pla(d)

Note that Im 92 = (0). So
ker 0;
Imo,

Now [v1,va] + [v2,v3] + [v3,v1] € kF1(A) and in ker &;. So

ﬁl(A,k}) = :ker(‘)l.

T = {c([v1,v2] + [v2,v3] + [v3,v1]) | ¢ € k} C ker 0.

We claim that in fact ker 9; = T'. So, suppose v = mq[v1,v2] + mo[ve, v3] + m3[vs, v1] € ker 0.
This implies that d(v) = mq[va] — m1[v1] + mea[vs] — ma[ve] + ma[vi] — ms[vs] = 0 which means
that m1 = mo = m3. So, we get that v € T.

Hence H; (A, k) = ker 8; = k. Notice that A has a “hole”. Tt has the boundary for [vy, vg, v3],

but no [v1, v, vs).

Theorem 3.8.
Hy(A, k) + 1 = number of connected components of A.

Example 3.9. In our previous examples, Hy(A, k) = 0, since A is connected.

Problems from Lecture 8

1. Let [v1, v2,v3,v4,v5] be an oriented 4-simplex. Show that

63(84(['01,”2,103,1045 U5])) =0.

2. Let A be a simplicial complex with facets {{v1,v2}, {va,v3}, {vs,va},{vs,v1}} and let
k = Q. Suppose we have put an orientation on the faces so that oriented 1-simplexes
are: [v1,vs], [v2,v3], [Us, V4], [Va,v1]. Prove that

Hi(A, k) :{ Q=1

0 otherwise



3. Let rank ﬁi(A,k) = dimy ker 0; — dimy Im 9; ;. Let A be a simplicial complex of di-
mension d and f; the number of i-faces of A. If k is a field, then prove that
d

d
(-1 rank Hy(A k) = -1+ (-1)'f;
=0

i=—1
(Hint: dimy, £F(A) — dimy ker §; = dimy, Im 8; where F;(A) is the set of all faces of
dimension i of A.)



