Challenge Exercise 1
 MATH 1271/3071-2011
 Due Date: Oct 21, 2011

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the problem correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name.

Problem 1. [5pts] In class we introduced five logical operators: $\wedge, \vee, \sim, \rightarrow, \leftrightarrow$. However, do we need all of these operators? For example:

$$
p \rightarrow q \equiv \sim p \vee q .
$$

Hence, any time we see an implication \rightarrow, we can replace it with a statement using only \sim and \vee.
(a) Rewrite the following statement so that it only involves the operators \vee and \sim :

$$
(p \vee q) \rightarrow(p \rightarrow q)
$$

(b) Explain why can rewrite the operators \rightarrow, and \leftrightarrow using only the operators \wedge, \vee and \sim.
(c) Can we do the reverse, i.e., can we write each operator \wedge, \vee and \sim using only the operators $\rightarrow, \leftrightarrow$?
(d) Is it possible to use only two operators?

Problem 2. [5pts] The depth of a circuit is defined by specifying that the depth of the initial input is 0 , and if a gate has n different inputs at depths d_{1}, \ldots, d_{n}, respectively, then its outputs have depth equal to $\max \left\{d_{1}, \ldots, d_{n}\right\}+1$. The depth of a circuit is the maximum depth of the gates in a circuit.
(a) What is the depth of the circuit of Exercise 17 of Section 3.4 on page 89 .
(b) Compute the depth of a full adder (on page 87).

