> Challenge Exercise 1
> MATH $1271 / 3071-2012$
> Due Date: Oct 19,2012

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the problem correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name.
Problem 1. [5pts] Use mathematical induction to prove that 24 divides $n^{4}-6 n^{3}+23 n^{2}-18 n$ for all $n \geq 1$.

Problem 2. [5pts] The depth of a circuit is defined by specifying that the depth of the initial input is 0 , and if a gate has n different inputs at depths d_{1}, \ldots, d_{n}, respectively, then its outputs have depth equal to $\max \left\{d_{1}, \ldots, d_{n}\right\}+1$. The depth of a circuit is the maximum depth of the gates in a circuit.
(a) What is the depth of the circuit of Exercise 17 of Section 3.4 on page 92.
(b) Compute the depth of a full adder (on page 90).

