Challenge Exercise 2
 MATH 1271/3071-2012
 Due Date: Nov. 23, 2012

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the problem correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name.

Problem 1. [7pts] Suppose that we consider the the "left justified" Pascal Triangle, i.e.,
1
11
$1 \quad 2 \quad 1$
$\begin{array}{llll}1 & 3 & \underline{3} & 1\end{array}$
$\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}$
$\begin{array}{llllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$
$\begin{array}{lllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$

As in class, we start our counting of the rows from 0 instead of 1 . Starting from any row, add the numbers you get by moving one up and one to the right. For example, if we start at row 5 , the underlined numbers in the above triangle sum to $1+4+3=8$.

Use this procedure to compute some addition "diagonal" sums. What is the pattern? (Note that the first three sums are: $1=1,1=1$, and $1+1=2$.) Now come up of a proof that your pattern holds for all rows.

Problem 2. [3pts] Find 6 typos/errors in the textbook. Tell me which page and line they are on, and what the correction should be. I will compile all the corrections and send them to the author to help improve the textbook.

