Challenge Exercise 1
 MATH 1281 - 2009
 Due Date: Sept. 25, 2009

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the problem correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name.

Problem 1. [5pts] In class we introduced six logical operators: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$, and \oplus. However, do we need all of these operators? For example, on page 25 in Table 7 you can find the logical equivalence:

$$
p \rightarrow q \equiv \neg p \vee q .
$$

Hence, any time we see an implication \rightarrow, we can replace it with a statement using only \neg and \vee.
(a) Rewrite the following statement so that it only involves the operators \vee and \neg :

$$
(p \vee q) \rightarrow(p \rightarrow q)
$$

(b) Explain why can rewrite the operators \rightarrow, \leftrightarrow and \oplus using only the operators \wedge, \vee and \neg.
(c) Can we do the reverse, i.e., can we write each operator \wedge, \vee and \neg using only the operators $\rightarrow, \leftrightarrow$, and \oplus ?
(d) Is it possible to use only two operators?

Problem 2. [5pts] Let $p(x)$ and $q(x)$ be propositional functions in the variable x with a given universe.
(a) Explain why if $\forall x p(x) \vee \forall x q(x)$ is true, then the statement $\forall x(p(x) \vee q(x))$ is true.
(b) Show that the converse of (a) is false by finding a counterexample (i.e., you need to pick a universe and propositional functions $p(x)$ and $q(x)$ such that the statement "If $\forall x(p(x) \vee q(x))$ is true, then $\forall x p(x) \vee \forall x q(x)$ is true" is a false statement).

