NAME: \qquad
\qquad

MATH 1281 - Final Exam

Lakehead University

April 22, 2008

Dr. Adam Van Tuyl

Instructions: Answer all questions in the space provided. If you need more room, answer on the back of the page. Where appropriate, you must provide clear explanations.

You are not allowed to use a calculator. If a question involves a calculation you may leave it in an unexpanded form, e.g., you can write 5^{4} instead of 625 .

If doubt exists as to the interpretation of any question, you are urged to submit with the answer paper a clear statement of any assumptions made.

Page	Possible	Received
2	10	
3	8	
4	8	
5	4	
6	4	
7	6	
8	10	
9	10	
10	12	
11	8	
12	8	
13	4	
14	8	
Total	100	

Chapter 1 - Logics and Proofs

1. [2pts] Construct a truth table for the following compound proposition:

$$
(\neg p \vee q) \rightarrow r
$$

2. [4pts] Let the universe of discourse be $D=\{2,4,6,8,10,12\}$, and consider the following propositional functions:

$$
Q(x)=x \text { is even }, \quad S(x)=x^{2}<1, \quad T(x)=x-2 \text { is an element of } D .
$$

Circle all the true statements in the list below:

$$
\begin{array}{llll}
\forall x Q(x) & \exists x Q(x) & \forall x \neg Q(x) & \exists x \neg Q(x) \\
\forall x S(x) & \exists x S(x) & \forall x \neg S(x) & \exists x \neg S(x) \\
\forall x T(x) & \exists x T(x) & \forall x \neg T(x) & \exists x \neg T(x)
\end{array}
$$

3. [4pts] Prove that the product of two odd numbers is odd.

Chapter 2 - Sets, Functions, Sequences, and Sums

4. [2pts] Provide a simple formula or rule that generates the terms of the integer sequence that begins:

$$
2,5,8,11,14,17, \ldots
$$

5. [2pts] Determine if the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
f(x)=\left\lfloor\frac{x^{2}}{2}\right\rfloor
$$

is one-to-one (injective) and/or onto (surjective). Justify your answer.
6. [4pts] Let A, B and C be sets. Is it true that

$$
(A-B)-C=A-(B-C) ?
$$

If yes, prove the set equality; if no, give a counterexample.

Chapter 3 - Algorithms, Integers and Matrices

7. [4pts] Consider the following algorithm:
```
procedure mystery(a_1,...,a_n; integers)
```

```
max:=a_1
min:=a_1
for i:=1 to n
begin
    if a_i > max then max:=a_i
    if a_i < min then min:=a_i
end
mystery:=(max+min)/2
return(mystery)
end
```

What is the output of this algorithm with the input mystery $(1,2,3,4,5,6,7,8,9,10)$?
8. [4pts] Let m and n be positive integers such that $n \mid m$ and $m, n>1$. Prove that if $a \equiv b(\bmod m)$, then $a \equiv b(\bmod n)$.

Chapter 4 - Induction and Recursion
9. [4pts] Prove by mathematical induction that $n^{2} \geq 2 n+1$ when $n \geq 3$.
10. [4pts] Prove by mathematical induction that for all natural numbers $n \geq 1$,

$$
1 \cdot 3+2 \cdot 4+3 \cdot 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}
$$

Chapter 5 - Counting

11. [2pts] What is the coefficient of $x^{16} y^{4}$ in the expansion of $(3 x-2 y)^{20}$?
12. [4pts] Count the number of solutions to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=34
$$

where x_{1}, x_{2}, x_{3} and x_{4} are integers and when
(i) $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$.
(ii) $x_{1}, x_{2}, x_{3} \geq 0$, and $0 \leq x_{4} \leq 6$.

You may leave your solution in an unexpanded form using binomial coefficients.

Chapter 6 - Discrete Probability

13. [2pts] Suppose you have two fair 8 sided die. What is probability of rolling a 10 ?
14. [4pts] Find and correct the error in the solution to the following problem:

Problem. What is the probability that all heads appear when you flip three coins?
Solution. There are four possible outcomes: (i) all heads, (ii) two heads and one tail, (iii) one head and two tails, and (iv) three tails. So, p (all heads) $=1 / 4$.

Chapter 7 - Advance Counting Techniques

15. [4pts] If $G(x)$ is the generating function for $a_{0}, a_{1}, a_{2}, \ldots$, describe in terms of $G(x)$ the generating function for
(i) $0,0,0, a_{0}, a_{1}, a_{2}, \ldots$
(ii) $a_{0}, 3 a_{1}, 9 a_{2}, 27 a_{3}, 81 a_{4} \ldots$
16. [4pts] Solve the recurrence relation

$$
9 a_{n}=6 a_{n-1}-a_{n-2}
$$

when $a_{0}=6$ and $a_{1}=5$.

Chapter 8 - Relations

17. [6pts] Consider the set $A=\{-2,-1,0,1,2\}$ and consider the relation R on A where

$$
R=\left\{(a, b) \mid a^{2}=b^{2}\right\}
$$

(i) What is the zero-one matrix associated to R ?
(ii) Determine if R is (a) reflexive, (b) symmetric, (c) antisymmetric, and (d) transitive. Justify your answers!

Chapter 9 - Graphs

18. For the questions below, use the following graph:

(i) [2pts] Write out the adjacency matrix for the above graph.
(ii) $[\mathbf{2 p t s}]$ Find a subgraph of the above graph isomorphic to C_{4}.
(iii) [2pts] Is the above graph a planar graph? If yes, draw the graph as a planar graph; if no, explain why not.
(iv) [2pts] Does the above graph have an Euler path? an Euler circuit? If so, write out the path/circuit.
(v) [2pts] Does the above graph have a Hamilton path? a Hamilton circuit? If so, write out the path/circuit.
(vi) [2pts] Find the chromatic number of the above graph.
19. [6pts] We say that connected graph is almost Eulerian if it contains a circuit that uses every edge in the graph once and one edge in the graph twice.
(i) Determine if the following two graphs are almost Eulerian:

(ii) Find a characterization of almost Eulerian graphs similar to the characterization of Euler graphs given in class.
20. [2pts] Draw the graph whose adjacency matrix has the form

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
2 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 2 & 2 \\
0 & 1 & 1 & 2 & 0 \\
2 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Chapter 10 - Trees

21. Answer the following questions about the weighted graph given below:

(i) [2pts] Find the shortest path between a and h (you can do this by inspection).
(ii) [3pts] Use Prim's algorithm to find a minimal spanning tree of the above graph. As in class, list the order in which you picked the edges for your spanning tree, and draw your spanning tree.
(iii) [3pts] Now adapt Kruskal's Algorithm to find a maximal spanning tree, i.e., a spanning tree of largest weight. As in class, list the order in which you picked the edges for your spanning tree, and draw your spanning tree.
22. [2pts] Create a binary search tree for the following list of words in the quote:

Black holes result from God dividing the universe by zero.
(Assume that normal alphabetical ordering is being used.)

Chapter 11 - Boolean Algebras

23. [2pts] Using a table, express the values of the Boolean function:

$$
F(x, y, z)=x(y z+\bar{x} \bar{z})
$$

24. In the strange world of ANTI-LAND, democracy works backwards, that is, the minority makes the decision. So, in a committee of three people, a motion will pass if 1 or less people vote for it, but the motion will fail if 2 or more people vote for it.
(i) [4pts] Design a circuit that implements the voting of this committee using inverters, AND gates, and OR gates.
(ii) [4pts] Can you simplify your circuit in (i)? If so, do so; otherwise, explain why you cannot simplify your circuit.
