Challenge Exercise 1 MATH 1281 – 2010 Due Date: Oct 8, 2010

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the problem correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name.

Problem 1. [5pts] In class we introduced six logical operators: $\land, \lor, \neg, \rightarrow, \leftrightarrow$, and \oplus . However, do we need all of these operators? For example, on page 25 in Table 7 you can find the logical equivalence:

$$p \to q \equiv \neg p \lor q$$

Hence, any time we see an implication \rightarrow , we can replace it with a statement using only \neg and \lor .

(a) Rewrite the following statement so that it only involves the operators \lor and \neg :

$$(p \lor q) \to (p \to q)$$

(b) Explain why can rewrite the operators \rightarrow , \leftrightarrow and \oplus using only the operators \land , \lor and \neg .

(c) Can we do the reverse, i.e., can we write each operator \land, \lor and \neg using only the operators $\rightarrow, \leftrightarrow$, and \oplus ?

(d) Is it possible to use only two operators?

Problem 2. [5pts] Let p and q be propositions.

(a) Prove that $[(p \land q) \rightarrow F] \rightarrow (\neg p \lor \neg q)$ is a tautology. (The F denotes a false statement.)

(b) Explain why the tautology encodes a proof by contradiction. That is, why does this statement justify why a proof by contradiction works?