Challenge Exercise 2
 MATH 1281-2010
 Due Date: Nov 12, 2009

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the problem correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name.

Problem 1. [5pts] Let A be any set, and let $f: A \rightarrow A$ be any function. We define a sequence of sets $\left\{A_{n} \mid n \in \mathbb{N}\right\}$ where

$$
A_{0}=A \text { and } A_{n+1}=f\left(A_{n}\right) \text { for all } n \geq 0 .
$$

Prove the following statements:
(a) For all $n \geq 0, A_{n+1} \subseteq A_{n}$.
(b) Let

$$
A^{*}=\bigcap_{n \in \mathbb{N}} A_{n} .
$$

Then $f\left(A^{*}\right) \subseteq A^{*}$.

Problem 2. [5pts] Let $f: A \rightarrow B$ be any function. For any subset $C \subseteq B$, define:

$$
f^{-1}(C)=\{a \in A \mid f(a) \in C\}
$$

That is, $f^{-1}(C)$ contains all the elements of A that get mapped into C.
Let $D \subseteq A$ and $C \subseteq B$. Show:
(i) $D \subseteq f^{-1}(f(D))$
(ii) $f\left(f^{-1}(C)\right) \subseteq C$

