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1. Introduction

One of the main goals of this course, besides learning the mathematical content, is to learn
how to create and write a proof. Up to this point in your mathematical career, you have been
learning how to do calculations or learning techniques to solve various types of problems.
For example, in calculus, you learn how to differentiate a function like f(x) = x34+78x2+1.

Unfortunately, this exposure to mathematics may have given you a skewed perspective
on what mathematicians do. We do not sit around and integrate functions all day. Instead,
we prove assertions, and to do so, we must write proofs. The purpose of this course is to
help you make this transition from learning techniques to learning how to create and write
proofs, and in doing so, you will better understand what a working mathematician does.

Creating and writing proofs is an acquired skill, and takes lots and lots of practice. Do
not get discouraged at the beginning because it will take some time to get used to this
format. As well, creating proofs is a time involved process. Do not be surprised if this
course takes up a large amount of your time – it should! Please bear this in mind as you
approach your homework. It is not unreasonable to expect some questions to take hours to
solve.

This short note will give you some pointers on what a proof is and how to write a proof.

2. Fundamentals

Mathematics can be broken down into definitions and theorems.

Definitions describe the objects we choose to study. They should be natural and simple
enough so that no reasonable person will disagree with them. For example:

Definition. A positive integer p > 1 is a prime if the only positive integers that divide p
are 1 and itself.

Theorems, on the other hand, are logical consequences that we deduce about those objects
described in the definitions. For example

Theorem. There exist an infinite number of prime numbers

Note that sometimes we use the word Proposition instead of Theorem, but they mean the
same thing. As well, a Lemma is also another term used to describe a logical consequence,
but is usually reserved for results that are needed to prove a much more complicated The-
orem. Think of a Lemma as a “little theorem”. A Corollary is also a logical consequence
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that follows from a more general theorem. For example, a corollary of the above theorem
would be

Corollary. There exist one million prime numbers.

The process by which theorems are deduced from definitions is called a proof. A proof is a
logical explanation of a theorem. For example,

Theorem. If m is an odd integer, then m2 is an odd integer.

Proof. Let m be an odd integer. Since m is odd, there exists an integer k such that
m = 2k + 1. Then

m2 = (2k + 1)2 = 4k2 + 4k + 1.

Since m2 = 2(2k2 + 2k) + 1, m2 is an odd integer. �

A proof always starts with the word Proof, and at the end of the proof, we usually put
a box 2 to denote the end of the proof. When writing a proof, we always use the proper
rules of English grammar (more on this at the end).

3. Finding proofs

Of course, before we can even discuss writing proofs, by which we mean writing up your
logical explanation, we need to first describe how to determine the proof in the first place.
This, however, is no easy task since there is no general strategy for finding a proof for a
theorem (if there was, mathematicians would be out of a job!).

Luckily, there are some general strategies for specific types of problems, that I will de-
scribe below.

3.1. Induction. This is a proof strategy that will be familiar to most, so we will not spend
too much time on it. Basically, mathematical induction is used to prove statements like:

Theorem. For all positive integers n, it is true that n has property P .

For example:

Theorem. For every positive integer n,

1 + 2 + · · · + n = n(n + 1)/2.

Formally, mathematical induction is based upon the following axiom:

Principle of Induction. Given a logical statement P (n) that depends upon a positive
integer n, if we can show that

(1) Base Case: P (1) is true, and
(2) Induction step: If P (k) is true, then P (k + 1) is true;

Then P (n) is true for all positive integers n.

We will now prove the above theorem using induction.
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Proof. We use mathematical induction. To prove the base case, we must show that the
statement 1 + 2 + · · · + n = n(n + 1)/2 is true if n = 1. This is simple to see since
1 = 1(1 + 1)/2.

We now must show that if the statement 1+2+· · ·+n = n(n+1)/2 is true for some integer
n, then the statement also holds true for n+1, that is, 1+2+· · ·+n+n+1 = (n+1)(n+2)/2.
Assuming that 1 + 2 + · · · + n = n(n + 1)/2 is true, we then have

1 + 2 + · · · + n + n + 1 = (1 + · · · + n) + n + 1

= n(n + 1)/2 + n + 1

= (n + 1)(n/2 + 1)

= (n + 1)(n + 2)/2.

We then have shown that 1+2+ · · ·+n+n+1 = (n+1)(n+2)/2, and so by the Principle
of Induction, the statement is true for all positive integers n. �

Note that in the above proof we have used the rules of English grammar. For those of
you who took Math 1281 (Discrete Mathematics) we were not so formal about the written
proof. However, in this course, proofs by mathematical induction should be written in a
style similar to the above example.

3.2. If-Then Proofs. A great majority of mathematical theorems have the if-then form.

Theorem. If (conditions A) are true, then (conditions B) follow.

For example

Theorem. If m is an even integer, then m2 is divisible by 4.

The if part of the proof are the given assumptions. This should be the first part of your
proof. We usually expand out what is written using the definitions of the given terms.

The then part of the proof is what we want to show follows from our assumptions. It will
appear at the end of the proof as our conclusion.

To prove a if-then proof, you need to show how the given assumptions and logical de-
ductions lead to the conclusion. You should try working “forward and backward”. Work
forward by thinking about what the assumptions imply, and work backward by thinking
about what sort of conditions will imply the conclusion.

We will prove the above theorem as an example:

Proof. Let m be an even integer. Since m is even, there exists an integer k such that
m = 2k. Because m = 2k, then m2 = (2k)2 = 4k2. Since m2 = 4k2, the integer m2 is
divisible by 4. �

3.3. Contrapositive. The contrapositive is a variation of the if-then proof. Recall that
the statement

If A is true, then B follows.

is logically equivalent to the contrapositive statement

If B is not true, then A does not follow.
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So, to prove the first statement, it is enough to the prove the second. For example,

Theorem. If m is a natural number such that m2 is odd, then m is odd.

Proof. We shall prove the contrapositive statement: “If m is not odd, then m2 is not odd.”
If m is not odd, then m is even. If m is even, then we showed earlier that m2 is even. Since
m2 is even, m2 is not odd. �

3.4. If and Only If. The “if and only if” (or sometimes, bi-conditional) is another variation
of the if-then structure. We sometimes are sloppy, and write iff for “if and only if”. An iff
statement has the following form:

A is true iff B is true.

An iff statement is really two if-then statements:

If A is true, then B follows.

and

If B is true, then A follows.

So, to prove an iff statement, two statements must be proved. For example:

Theorem. Let m be an integer. The integer m is even if and only if m + 1 is odd.

Proof. ⇒ We will first show that if m is even, then m + 1 is odd. If m is even, then there
exists an integer k such that m = 2k. If m = 2k, then m + 1 = 2k + 1. Thus, m + 1 is odd.

⇐ We now show that if m + 1 is odd, then m is even. Since m + 1 is odd, there exists
an integer l such that m + 1 = 2l + 1. If m + 1 = 2l + 1, then m = 2l. Thus, m is even. �

The arrows ⇒ and ⇐ are used to denote what “direction” of the iff statement we are
proving.

3.5. Equivalence of sets. In many proofs, one needs to show that two sets, say A and B,
are equal. To do this, one first shows that A ⊆ B, and then one shows that B ⊆ A. To
show that A ⊆ B, take an arbitrary element x ∈ A, and argue why x is also an element of
B. The following theorem and its proof is an example of how to prove two sets are equal.

Theorem. For any sets A and B, prove that

(A − B) ∪ (B − A) = (A ∪ B) − (A ∩ B)

Proof. ⊆ Let x ∈ (A − B) ∪ (B − A). Then x ∈ (A − B) or x ∈ (B − A). If x ∈ (A − B),
then x ∈ A, but x 6∈ B. So x ∈ (A ∪ B). Since x 6∈ B, we have x 6∈ (A ∩ B). So,
x ∈ (A ∪ B) − (A ∩ B). On the other hand, if x ∈ (B − A), then x ∈ B, but x 6∈ A.
Since x ∈ B, we have x ∈ (A ∪ B). Because x 6∈ A, the element x 6∈ (A ∩ B). So
x ∈ (A ∪ B) − (A ∩ B)

Since x was an arbitrary element, we have (A − B) ∪ (B − A) ⊆ (A ∪ B) − (A ∩ B).

⊇ Let x ∈ (A ∪ B) − (A ∩ B). Then x ∈ (A ∪ B) so x ∈ A or x ∈ B. On the other
hand, x 6∈ (A ∩ B). Thus, if x ∈ A, x 6∈ B, or if x ∈ B, then x 6∈ A. In the first case
x ∈ (A − B) ⊆ (A − B) ∪ (B − A), and in the second, x ∈ (B − A) ⊆ (A − B) ∪ (B − A).
Since x was an arbitrary element, we have (A ∪ B) − (A ∩ B) ⊆ (A − B) ∪ (B − A). �



CREATING AND WRITING PROOFS 5

The containment symbols ⊆ and ⊇ are used to denote which containment “direction” we
are proving.

In Math 1281 (Discrete Mathematics) we used membership tables to prove the equivalence
of sets. However, this method of proof does not work in general. Instead, you should become
familiar with the method used above. Note that you have to justify each step to the reader.

3.6. Other types of proofs. The list given above is far from complete. For example,
there is an entire class of proofs commonly refereed to as δ − ǫ (delta-epsilon) proofs which
are used in Real Analysis. Keep your eyes open for patterns, but do not think that all proof
strategies fall nicely into one of these categories. In fact, the opposite is true.

4. Writing your proof

A well written proof is a joy to read. However, it is difficult to write a nice polished proof.
Like any writing assignment, a written proof usually goes through many drafts before it is
finished. To do assignments that comprise of proofs, I suggest the following procedure:

(1) On scrap paper, sketch out the logical steps of the proof. Do not worry about
grammar and English rules at this stage. Make sure that each step is a valid step.

(2) Look over your proof, and look for gaps in your proof. For example, you should
think about your peers in your class. If you had to explain your proof to them,
would they be able to understand? In fact, it is always a good idea to talk to your
classmates.

(3) Write a rough draft of your proof (on scrap), but this time use all the proper rules
of grammar. Edit you draft just as you would for an English assignment.

(4) On your homework assignment, write out the final version of your proof.

As you can see, writing proofs is a highly non-trivial process. Make sure that you leave
enough time to write up your proofs. You might want to spread some of the steps over
several days.

Here are some specific suggestions to help improve your mathematical writing.

(1) Use the present, first person plural active voice.
Bad: It will now be shown that...
Good: We show...

(2) Choose the right technical term. For example, not all formulas are equations.

(3) Do not start a sentence with a symbol.
Bad: xn − a has n distinct roots.
Good: The polynomial xn − a has n distinct roots.

(4) Respect the equal sign.
Bad: x2 = 4 = |x| = 2
Good: If x2 = 4, then |x| = 2.

(5) If you use “if”, then use “then”.
Bad: If x is positive, x > 0.
Good: If x is positive, then x > 0

(6) Do not omit “that”.
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Bad: Assume x is positive.
Good: Assume that x is positive

(7) Identify the type of variables.
Bad: For all x, y, |x + y| ≤ |x| + |y|.
Good: For all real numbers x, y we have |x + y| ≤ |x| + |y|.

(8) Use “that” and “which” correctly.
Bad: The least integer which is greater than

√
27.

Good: The least integer that is greater than
√

27.

(9) A variable used as an appositive need not be set off by commas.
Bad: Consider the group, G, that...
Good: Consider the group G that...

(10) Do not use symbols such as ∃,∀,≤ in text; replace them by words. (They can be
used in formulas).

Bad: Let S be the set of numbers < 1.
Good: Let S be the set of numbers less than 1.

(11) Use complete sentences and proper paragraph structure.


