## Challenge Exercise 1 MATH 2275 - Winter 2012

Due Date: Feb. 2, 2012
These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the solutions correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name. For those of you in Math 2232/2234 (Abstract Algebra), you are encouraged to write you solutions as a formal proof.

Problem Let $p(x)$ be the polynomial

$$
p(x)=x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} .
$$

The companion matrix of $p(x)$ is the $n \times n$ matrix

$$
C(p)=\left[\begin{array}{ccccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{1} & -a_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

(a) [ $\mathbf{2} \mathbf{~ p t s}]$ Find the companion matrix of $p(x)=x^{2}-7 x+10$. Then find the characteristic polynomial of the matrix $C(p)$.
(b) [2 pts] Find the companion matrix of $p(x)=x^{3}+3 x^{2}-4 x+12$. Then find the characteristic polynomial of the matrix $C(p)$.
(c) [2 pts] Show that the companion matrix $C(p)$ of $p(x)=x^{2}+a x+b$ has characteristic polynomial $\lambda^{2}+a \lambda+b$.
(d) [2 pts] Show that if $\lambda$ is an eigenvalue of the companion matrix $C(p)$ from part $(c)$, then $\left[\begin{array}{l}\lambda \\ 1\end{array}\right]$ is an eigenvector of $C(p)$ corresponding to $\lambda$.
(e) [2 pts] Make a conjecture about the characteristic polynomial of the matrix $C(p)$ if $p(x)=$ $x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots a_{1} x+a_{0}$.

