Challenge Exercise 1 MATH 2275 – Winter 2012 Due Date: Feb. 2, 2012

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the solutions correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name. For those of you in Math 2232/2234 (Abstract Algebra), you are encouraged to write you solutions as a formal proof.

Problem Let p(x) be the polynomial

$$p(x) = x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_{1}x + a_{0}.$$

The companion matrix of p(x) is the $n \times n$ matrix

	$\left[-a_{n-1}\right]$	$-a_{n-2}$	•••	$-a_1$	$-a_0$
	1	0	•••	0	0
	0	1		0	0
C(p) =	÷	•	۰.	:	÷
	0	0		0	0
	0	0		1	0

- (a) [2 pts] Find the companion matrix of $p(x) = x^2 7x + 10$. Then find the characteristic polynomial of the matrix C(p).
- (b) [2 pts] Find the companion matrix of $p(x) = x^3 + 3x^2 4x + 12$. Then find the characteristic polynomial of the matrix C(p).
- (c) [2 pts] Show that the companion matrix C(p) of $p(x) = x^2 + ax + b$ has characteristic polynomial $\lambda^2 + a\lambda + b$.
- (d) [2 pts] Show that if λ is an eigenvalue of the companion matrix C(p) from part (c), then $\begin{bmatrix} \lambda \\ 1 \end{bmatrix}$ is

an eigenvector of C(p) corresponding to λ .

(e) [2 pts] Make a conjecture about the characteristic polynomial of the matrix C(p) if $p(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0$.