Challenge Exercise 3
 MATH 2275 - Winter 2012
 Due Date: March 8, 2012

These challenge exercises ask you questions about material covered in class, but at a greater depth. You are not required to do this exercise; it is intended as extra work. However, you will receive extra credit if you complete the solutions correctly.

When handing this assignment in, please clearly label your work as a Challenge Exercise. Make sure to include your name. For those of you in Math 2232/2234 (Abstract Algebra), you are encouraged to write you solutions as a formal proof.

Problem. Let \mathbf{u} be any unit vector in \mathbb{R}^{n}. We define an $n \times n$ matrix Q by

$$
Q=I_{n}-2 \mathbf{u u}^{T} .
$$

The matrix Q is called a Householder matrix.
For the following questions, assume $\mathbf{u} \in \mathbb{R}^{2}$. So the Householder matrix is a 2×2 matrix.
(a) $[\mathbf{2 p t s}]$ Show that Q is a symmetric matrix (a matrix A is symmetric if $A^{T}=A$).
(b) $[4 \mathbf{p t s}]$ Show that Q is an orthogonal matrix (see the definition on page 344).
(c) $[\mathbf{2 p t s}]$ Show that $Q^{2}=I_{2}$.
(d) $[\mathbf{2 p t s}]$ Show that

$$
Q \mathbf{v}= \begin{cases}-\mathbf{v} & \text { if } \mathbf{v} \in \operatorname{Span}\{\mathbf{u}\} \\ \mathbf{v} & \text { if } \mathbf{v} \cdot \mathbf{u}=0\end{cases}
$$

