Homework Assignment 1

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the other will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let V be a vector space. Suppose $v, w \in V$ satisfy $v+w=v$. Prove that $w=0$.
Exercise 2. Consider the two subspaces $U=\left\{\left(3 x_{1}, x_{1}\right) \mid x_{1} \in \mathbb{R}\right\}$ and $W=\left\{\left(-x_{1}, 3 x_{1}\right) \mid x_{1} \in \mathbb{R}\right\}$ of \mathbb{R}^{2}. Prove that $U+W$ is a direct sum.

Part B. [Proof Questions; 6pts]
Exercise 3. Let U_{1}, U_{2} be two subspaces of a vector space V. Prove that $U_{1} \cap U_{2}$ is also a subspace of V. Given an example to show that $U_{1} \cup U_{2}$ is not necessarily a subspace.

Exercise 4. Fix a non-zero real number $a \in \mathbb{R}$. Suppose that

$$
U=\left\{\left(a x_{1}, x_{1}\right) \mid x_{1} \in \mathbb{R}\right\}
$$

Find a subspace W of \mathbb{R}^{2} such that $\mathbb{R}^{2}=U \oplus W$.
Hint. Make sure you prove that your set W is a subspace and $U+W=\mathbb{R}^{2}$. Exercise 2 may also help.

