Homework Assignment 2

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the other will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let $U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in F^{4} \mid 2 x_{1}=x_{2}, 3 x_{3}+6 x_{4}=0\right\}$. This is a subspace of F^{4} (you may wish to convince yourself of this fact, but you don't need to prove it). Prove that $\left(\frac{1}{2}, 1,0,0\right),(0,0,-2,1)$ is a basis for U (make sure to prove that your set of vectors is linearly independent and spans $U)$.

Exercise 2. Suppose that v_{1}, v_{2}, v_{3} are linearly independent in V. Is the set $v_{1}+v_{2}, 2 v_{2}, v_{3}+v_{2}$ also linearly independent in V ? Justify your answer.

Part B. [Proof Questions; 6pts]
Exercise 3. Let v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m} be vectors in vector space V. Prove that

$$
\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{span}\left(w_{1}, \ldots, w_{m}\right)
$$

if and only if $v_{i} \in \operatorname{span}\left(w_{1}, \ldots, w_{m}\right)$ for all $i=1, \ldots, n$ and $w_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$ for all $j=$ $1, \ldots, m$.

Remark. This result is very useful since it gives us a method to prove two sets of elements produce the same spanning set.

Exercise 4. Let $V=\mathcal{P}_{4}(\mathbb{R})$ be the vector space of polynomials of degree 4 or less, and suppose that the polynomials $q_{1}, q_{2}, q_{3}, q_{4}, q_{5} \in V$ have the property that $q_{1}(2021)=q_{2}(2021)=q_{3}(2021)=$ $q_{4}(2021)=q_{5}(2021)=0$. Show that the polynomials q_{1}, \ldots, q_{5} are linearly dependent in V.

Hint. You can use the fact fact that $q(2021)=0$ implies $q(z)=(z-2021) q^{\prime}(z)$ where $\operatorname{deg} q^{\prime}(z)=$ $\operatorname{deg} q(z)-1$ without proof.

