Homework Assignment 3

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the other will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let U be a subspace of the vector space F^{2021} with $\operatorname{dim} U=1010$. Suppose W is another subspace of F^{2021} such that $U+W=F^{2021}$ and $\operatorname{dim} U \cap W \geq 1000$. Find upper and lower bounds on $\operatorname{dim} W$.

Exercise 2. Fix an integer $m \geq 1$, and let $\operatorname{Int} \in \mathcal{L}\left(\mathcal{P}_{m}(\mathbb{R}), \mathcal{P}_{m+1}(\mathbb{R})\right)$ be the linear map given by

$$
\operatorname{Int}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}\right)=a_{0} x+\frac{a_{1}}{2} x^{2}+\frac{a_{2}}{3} x^{3}+\cdots+\frac{a_{m}}{m+1} x^{m+1}
$$

Prove that $\operatorname{dim} \operatorname{Null}($ Int $)=0$.
Part B. [Proof Questions; 6pts]
Exercise 3. Suppose that $T \in \mathcal{L}(V, W)$ is injective, and that v_{1}, \ldots, v_{n} are linearly independent in V. Prove that $T v_{1}, \ldots, T v_{n}$ are linear independent in W.

Exercise 4. Fix integers $1 \leq n \leq m$. Let e_{1}, \ldots, e_{n} be the standard basis of F^{n} and f_{1}, \ldots, f_{m} be the standard basis of F^{m}. For $i=1, \ldots, n$, define the linear map $T^{(i)}$ to be the linear map

$$
T^{(i)} e_{k}= \begin{cases}f_{i} & \text { if } k=i \\ 0 & \text { otherwise }\end{cases}
$$

That is, $T^{(i)}$ is the linear map that sends e_{i} to f_{i}, and it sends all the other basis elements to 0. The elements $T^{(1)}, T^{(2)}, \ldots, T^{(n)}$ all belong to $\mathcal{L}\left(F^{n}, F^{m}\right)$ Show that these elements are linearly independent elements in the vector space $\mathcal{L}\left(F^{n}, F^{m}\right)$.

Hint. You need to show that if c_{1}, \ldots, c_{n} are constants such that $c_{1} T^{(1)}+\cdots+c_{n} T^{(n)}=0$, the zero linear map in $\mathcal{L}\left(F^{n}, F^{m}\right)$, then c_{1}, \ldots, c_{n} are all zero. Note that $\left(c_{1} T^{(1)}+\cdots+c_{n} T^{(n)}\right)$ is a linear map.

