Homework Assignment 4

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{4}(\mathbb{R})$ be the linear transformation given by

$$
T p=\left(1+2 x+3 x^{2}\right) p .
$$

Using the standard bases $\left\{1, x, x^{2}\right\}$ for $\mathcal{P}_{2}(\mathbb{R})$ and $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ for $\mathcal{P}_{4}(\mathbb{R})$, find $\mathcal{M}(T)$, the matrix of T with respect to these two bases.

Exercise 2. Let $V=F^{\infty}$. Consider the two linear maps $T, S \in \mathcal{L}\left(F^{\infty}, F^{\infty}\right)$ where

$$
T\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)
$$

and

$$
S\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)
$$

Prove that $T S=I$, but $S T \neq I$.
Part B. [Proof Questions; 7pts]
Exercise 3. Let V and W be finite dimensional vector spaces (with $\operatorname{dim} V \neq 0$ and $\operatorname{dim} W \neq 0$) and $T \in \mathcal{L}(V, W)$. Suppose that there are bases v_{1}, \ldots, v_{n} of V and w_{1}, \ldots, w_{m} for W such that $\mathcal{M}(T)$ with respect to these bases contains only the values 2021, i.e.,

$$
\mathcal{M}(T)=\left[\begin{array}{ccc}
2021 & \cdots & 2021 \\
\vdots & & \vdots \\
2021 & \cdots & 2021
\end{array}\right]
$$

Prove that $\operatorname{dim} \operatorname{Null}(T)=\operatorname{dim} V-1$.
Exercise 4. Let V be a finite dimensional vector space, and $S, T \in \mathcal{L}(V)$. Prove that $S T=I$ if and only if $T S=I$.
Remark. Note that Exercise 2 shows that this exercise is false if V is not finite dimensional.
Exercise 5. Let z_{1}, z_{2}, z_{3} be three distinct complex numbers, and let w_{1}, w_{2}, w_{3} be any three complex numbers (not necessarily distinct). Prove that there is a unique polynomial $p \in \mathcal{P}_{2}(\mathbb{C})$ such that $p\left(z_{i}\right)=w_{i}$ for $i=1, \ldots, 3$.

Hint. Set up a system of linear equations, and use the fact from Math 1 B 03 that if A is a square matrix, $A z=w$ has a unique solution if and only if the determinant of A is non-zero. You may also wish to expand out $\left(z_{3}-z_{2}\right)\left(z_{3}-z_{1}\right)\left(z_{2}-z_{1}\right)$.

Remark. There is nothing special about 3 in the above exercise. The above result is still true if we take n distinct complex numbers z_{1}, \ldots, z_{n} and any n-tuple $\left(w_{1}, \ldots, w_{n}\right)$ of complex numbers. To prove this result, you need a result about Vandemonde matrices.

