Homework Assignment 5

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let $T \in \mathcal{L}(V)$ and suppose that U and W are subspaces of V that are invariant under T. Prove that $U \cap W$ is also invariant under T.

Exercise 2. Let $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ be given by

$$
T(x, y, z)=(0,2021 z,-x)
$$

Find all the eigenvalues and corresponding eigenvectors.
Part B. [Proof Questions; 6pts]
Exercise 3. Consider the linear operator $T \in \mathcal{L}\left(F^{\infty}\right)$ given by

$$
T\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, \ldots\right)=\left(z_{2}, z_{4}, z_{6}, z_{8}, \ldots\right)
$$

Prove that for each positive integer $n \in \mathbb{N}$, the integer n is an eigenvalue of T.
Remark. We proved (Theorem 5.13) that if $\operatorname{dim} V=n$, then any $T \in \mathcal{L}(V)$ has at most n distinct eigenvalues. This result show that if V is infinite dimensional, we can have infinitely many distinct eigenvalues.

Exercise 4. Suppose V is a finite dimensional vector space. Suppose $T \in \mathcal{L}(V)$ is a linear operator with eigenvalue λ, and let v be an eigenvector corresponding λ. Let $p(z)=3+2021 z+2 z^{2}$, and consider the linear operator $p(T)$. Prove that $p(\lambda)$ is an eigenvalue of $p(T)$ with corresponding eigenvector v.

