Homework Assignment 6

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ be the linear operator given by

$$
T(x, y)=(50 x-20 y, 125 x-50 y)
$$

Prove that T is a nilpotent operator.
Exercise 2. Let $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ be the same linear operator as in the previous question. Find a basis for \mathbb{C}^{2} such that the matrix $\mathcal{M}(T)$ with respect to this basis has the form described in Theorem 8.19.

Part B. [Proof Questions; 6pts]
Exercise 3. Let $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ be an operator with just one eigenvalue λ. Show that $T-\lambda I \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ is nilpotent.

Hint. Use Theorems 5.27 and 5.32 to show that there is a basis v_{1}, v_{2} of \mathbb{C}^{2} such that

$$
\mathcal{M}(T)=\left[\begin{array}{ll}
\lambda & \delta \\
0 & \lambda
\end{array}\right]
$$

with respect to this basis. Here δ is some complex number.
Exercise 4. Consider $T \in \mathcal{L}(V)$ with $\operatorname{dim} V=n$. Suppose there is a subspace $H \subseteq V$ with $\operatorname{dim} H=n-1$ and a vector v not in H such that

$$
T(h)=h \text { for all } h \in H
$$

and

$$
T(v)=-v .
$$

Show that T is diagonalizable. In particular, show that there is a basis of V such that

$$
\mathcal{M}(T)=\left[\begin{array}{ccccc}
-1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Remark. Note that H is an invariant under T.

