Homework Assignment 6

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via *Crowdmark*. You will be graded on your solution *and* how well you write your proof.

Part A. [Short Questions; 4pts]

Exercise 1. Let $T \in \mathcal{L}(\mathbb{C}^2)$ be the linear operator given by

T(x,y) = (50x - 20y, 125x - 50y).

Prove that T is a nilpotent operator.

Exercise 2. Let $T \in \mathcal{L}(\mathbb{C}^2)$ be the same linear operator as in the previous question. Find a basis for \mathbb{C}^2 such that the matrix $\mathcal{M}(T)$ with respect to this basis has the form described in Theorem 8.19.

Part B. [Proof Questions; 6pts]

Exercise 3. Let $T \in \mathcal{L}(\mathbb{C}^2)$ be an operator with just one eigenvalue λ . Show that $T - \lambda I \in \mathcal{L}(\mathbb{C}^2)$ is nilpotent.

Hint. Use Theorems 5.27 and 5.32 to show that there is a basis v_1, v_2 of \mathbb{C}^2 such that

$$\mathcal{M}(T) = \begin{bmatrix} \lambda & \delta \\ 0 & \lambda \end{bmatrix}$$

with respect to this basis. Here δ is some complex number.

Exercise 4. Consider $T \in \mathcal{L}(V)$ with dim V = n. Suppose there is a subspace $H \subseteq V$ with dim H = n - 1 and a vector v not in H such that

$$T(h) = h$$
 for all $h \in H$

and

$$T(v) = -v$$

Show that T is diagonalizable. In particular, show that there is a basis of V such that

$$\mathcal{M}(T) = \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Remark. Note that H is an invariant under T.