Homework Assignment 7

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let $V=F^{2021}$. Given an example of an operator $T \in \mathcal{L}(V)$ with characteristic polynomial $p(z)=(z-2021)^{2021}$, but minimal polynomial $q(z)=(z-2021)^{2}$.

Exercise 2. Suppose V is a vector space with $\operatorname{dim} V=7$. Let $T \in \mathcal{L}(V)$ be an operator which has exactly two eigenvalues, namely $\lambda_{1}=1$ and $\lambda_{2}=2021$. Prove that

$$
(T-I)^{6}(T-2021 I)^{6}=0 .
$$

Part B. [Proof Questions; 7pts]
Exercise 3. Let $T \in \mathcal{L}(V)$, and suppose that there is a Jordan Basis for V such that the matrix of T with respect to this basis has the form

$$
\mathcal{M}(T)=\left[\begin{array}{cccccc}
2 & x_{1} & 0 & 0 & 0 & 0 \\
0 & 2 & x_{2} & 0 & 0 & 0 \\
0 & 0 & 3 & x_{3} & 0 & 0 \\
0 & 0 & 0 & 3 & x_{4} & 0 \\
0 & 0 & 0 & 0 & 3 & x_{5} \\
0 & 0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

where x_{1}, \ldots, x_{5} are unknown numbers. Suppose it is also known that the minimal polynomial of T is $p(z)=(z-2)^{2}(z-3)$. What are the values of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$?

Exercise 4. Let a_{0}, a_{1}, a_{2} be any complex numbers. Let $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$ be the operator

$$
T(x, y, z)=\left(-a_{0} z, x-a_{1} z, y-a_{2} z\right) .
$$

(1) Show that $p(T)=0$ where

$$
p(z)=z^{3}+a_{2} z^{2}+a_{1} z+a_{0} .
$$

(2) Show that the minimal polynomial of T cannot have degree ≤ 2. Hint: look at the vectors $(1,0,0), T(1,0,0)$ and $T^{2}(1,0,0)$.
(3) Use the previous two parts to argue that $p(z)$ is the minimal polynomial of T.

Remark. See Queston 8.C \#18 for a generalization.

