Math 2R03 (Linear Algebra II)
Due: April 3, 2021

Homework Assignment 8

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let $V=\mathbb{R}^{3}$, and consider the inner product on V given by

$$
\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}+2 x_{3} y_{3} .
$$

Starting with the basis $w_{1}=(1,1,-1), w_{2}=(1,-1,1), w_{3}=(-1,1,1)$, of \mathbb{R}^{3}, use the GramSchmidt Procedure to find an orthonormal basis of V with respect to this inner product.

Remark. The numbers in your answer will not be "nice"; expect lots of square-roots!
Exercise 2. Let $V=\mathbb{R}^{3}$, and consider the same inner product on V as given in Exercise 1. Consider the linear functional $\varphi: V \rightarrow \mathbb{R}$ given by

$$
\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}+x_{2}+x_{3} .
$$

By the Riesz Representation Theorem, there exists a unique vector $u=\left(u_{1}, u_{2}, u_{3}\right) \in V$ such that

$$
\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(u_{1}, u_{2}, u_{3}\right)\right\rangle
$$

for all $\left(x_{1}, x_{2}, x_{3}\right) \in V$. What is $u=\left(u_{1}, u_{2}, u_{3}\right)$?
Part B. [Proof Questions; 6pts]
Exercise 3. Let $V \in \mathbb{R}^{2,2}$ be the vector space of 2×2 matrices with entries in \mathbb{R}. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then the trace of the matrix A , denoted $\operatorname{trace}(A)$, is defined as $\operatorname{trace}(A)=a+d$. Prove that operation

$$
\langle A, B\rangle=\operatorname{trace}\left(A^{T} B\right)
$$

is an inner product on V. Here, A^{T} denotes the transpose of the matrix A.
Remark. There is nothing special about $n=2$ in the above problem. In fact, you can show that this operation defines an inner product on $V=\mathbb{R}^{n, n}$. However, to simplify your proofs, I'm only asking you to do the special case of $n=2$.

Exercise 4. On the cover of your textbook is Apollonius's Identity. Prove this identity. (This is Exercise 6.A \#31.)
Hint. In $V=\mathbb{R}^{2}$ with the standard Euclidean inner product, $\|v\|$ is the length of the vector $v \in \mathbb{R}^{2}$. This fact was mentioned in Math 1B03.

