Math 2R03 (Linear Algebra II)
Due: April 13, 2021 (NOTE DATE CHANGE!)

Homework Assignment 9

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 6pts]
Exercise 1. Consider the operator $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ given by

$$
T(x, y)=(-x+2 y,-2 x+y)
$$

Find the polar decomposition of T.
Remark. To answer this question, turn this into a question about matrices and use the approach outlined at the end of Lecture 35. In particular, find a positive definite matrix R such that $R^{2}=A^{T} A$ and an orthogonal matrix U where $A=U R$ where $A=\mathcal{M}(T)$.

Exercise 2. With same operator T as in Exercise 1, find the singular value decomposition of T.
Remark. The question is asking you to find two singular values s_{1}, s_{2}, and to find two orthonormal bases e_{1}, e_{2} and f_{1}, f_{2} of \mathbb{C}^{2} so that

$$
T v=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+s_{2}\left\langle v, e_{2}\right\rangle f_{2}
$$

for all v. Look at Lecture 36 and use Exercise 1.

Part B. [Proof Questions; 6pts]
Exercise 3. Let V be a finite dimensional vector space, and let $T \in \mathcal{L}(V)$. Prove that $T+T^{*}$ is a self-adjoint operator. What does this statement mean for $n \times n$ matrices with entries in \mathbb{R} ?

Exercise 4. Let V be a finite dimensional complex vector space. Suppose that $E \in \mathcal{L}(V)$ satisfies $E^{2}=E$. Show that E is self-adjoint if and only if E is normal.
Hint. The direction (\Rightarrow) doesn't require $E^{2}=E$. For the reverse direction, to show $E=E^{*}$, show that there is a basis v_{1}, \ldots, v_{n} such that $E v_{i}=E^{*} v_{i}$ for all i (do you see why this enough?). Use the fact that $E^{2}=E$ to describe the possible eigenvalues of E (you may want to use results from Section 8.C).

