Homework Assignment 3

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the other will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let U be a subspace of the finite dimensional vector space V, i.e., $U \subseteq V$. Prove that if $\operatorname{dim} U=\operatorname{dim} V$, then $U=V$.

Remark. This result is very useful to show two vector spaces are equal. We use this fact throughout the course.

Exercise 2. Fix an integer $m \geq 1$, and let $\mathrm{D} \in \mathcal{L}\left(\mathcal{P}_{m+1}(\mathbb{R}), \mathcal{P}_{m}(\mathbb{R})\right)$ be the linear map given by

$$
\mathrm{D}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m+1} x^{m+1}\right)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+(m+1) a_{m+1} x^{m}
$$

Prove that $\operatorname{dim} \operatorname{Null}(\mathrm{D})=1$.
Part B. [Proof Questions; 6pts]
Exercise 3. Let $V=\mathbb{R}^{3}$ and consider the subspaces $U=\operatorname{span}((1,0,0),(0,1,0))$ and $W=$ $\operatorname{span}((2,1,0),(0,0,1))$ in V. Find a basis for $U \cap W$.
Hint. What is $\operatorname{dim}(U \cap W)$?
Exercise 4. Suppose that $v_{1}, \ldots, v_{2022} \in F^{2021}$ are 2022 distinct vectors. Prove that for any vector space W and for any linear map $T \in \mathcal{L}\left(F^{2021}, W\right)$, the vectors $T v_{1}, \ldots, T v_{2022}$ are linear dependent in W.

Additional Suggested Problems. [Not graded]
Problems 2.B \#5, 6, 2.C \#11, 14, 15, 3.A \#4, 7

