Homework Assignment 6

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let $V=\mathbb{R}^{3}$. Give an example of an operator $T \in \mathcal{L}(V)$ that has two eigenvalues $\lambda_{1}=2022$ and $\lambda_{2}=-1$, but that is not diagonalizable. Justify your answer.
Exercise 2. A particular operator $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$ is known to have two eigenvalues, $\lambda_{1}=2022$ and $\lambda_{2}=12$. It is also known that the multiplicity of $\lambda_{2}=12$ is 1 . By Theorem 8.29 , there is a basis so \mathbb{C}^{3} so that $\mathcal{M}(T)$ can be represented by a block diagonal matrix. Determine as many values of this block diagonal matrix as you can from the given information.

Part B. [Proof Questions; 6pts]
Exercise 3. Let V be a vector space with $T \in \mathcal{L}(V)$. Suppose that λ is an eigenvector of T. The index of a generalized eigenvector v of λ is the smallest integer f such that $v \in \operatorname{null}\left((T-\lambda I)^{f}\right)$.

Suppose that w_{f} is a generalized eigenvector of T of eigenvalue λ with index f. Prove that there exists generalized eigenvectors $w_{1}, w_{2}, \ldots, w_{f-1}$ of λ such that
(1) w_{i} has index i;
(2) $(T-\lambda I) w_{i}=w_{i-1}$ for $i=2, \ldots, f$, and
(3) $(T-\lambda I) w_{1}=0$.

Exercise 4. Suppose that V is a complex vector space with $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct non-zero eigenvalues of T. Prove that

$$
\operatorname{dim} G\left(\lambda_{1}, T\right)+\cdots+\operatorname{dim} G\left(\lambda_{m}, T\right) \leq \operatorname{dim} \operatorname{range}(T)
$$

Hint. The operator T may or may not have zero as an eigenvalue. Consider both cases.

Additional Suggested Problems. [Not graded]
Problems 5.C \# 3, 5, 9 8.A \# 2, 3, 15 8.B \# 1, 2, 4

