Math 2R03 (Theory of Linear Algebra)
Due: April 2, 2022

Homework Assignment 8

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Let $V=\mathcal{P}_{1}(\mathbb{R})$, and consider the inner product on V given by

$$
\langle p(x), q(x)\rangle=\int_{-2022}^{2022} p(x) q(x) d x
$$

Find an orthonormal basis of V with respect to this inner product.
Exercise 2. Let $V=\mathcal{P}_{1}(\mathbb{R})$, and consider the same inner product on V as given in Exercise 1. Consider the linear functional $\varphi: V \rightarrow \mathbb{R}$ give by

$$
\varphi\left(a_{0}+a_{1} x\right)=a_{0}+a_{1}
$$

By the Reisz Representation Theorem, there exists a unique $q(x) \in V$ such that

$$
\varphi(p(x))=\langle p(x), q(x)\rangle
$$

for all $p(x) \in V$. What is $q(x)$?
Part B. [Proof Questions; 6pts]
Exercise 3. Let V be an inner product space and suppose that $S, T \in \mathcal{L}(V)$. Prove that $S=T$ if and only if $\left\langle T v_{1}, v_{2}\right\rangle=\left\langle S v_{1}, v_{s}\right\rangle$ for all $v_{1}, v_{2} \in V$.

Exercise 4. Let V be a finite dimensional inner product space, and suppose that U is a subspace of V. The orthogonal complement of U, denoted U^{\perp} is the set

$$
U^{\perp}=\{v \in V \mid\langle v, u\rangle=0 \text { for all } u \in U\}
$$

This is also a subspace of V (see Section 6.C for more details).
Suppose that u_{1}, \ldots, u_{s} is a basis of U, and we extend this basis to a basis of V, say

$$
u_{1}, \ldots, u_{s}, w_{1}, \ldots, w_{t}
$$

Prove that if the Gram-Schmidt process applied to the list $u_{1}, \ldots, u_{s}, w_{1}, \ldots, w_{t}$ returns the vectors vectors $g_{1}, \ldots, g_{s}, h_{1}, \ldots, h_{t}$, then h_{1}, \ldots, h_{t} is a basis for U^{\perp}.

Hint. You may use the fact that $\operatorname{dim} U+\operatorname{dim} U^{\perp}=\operatorname{dim} V$ in a finite dimensional vector space (see Theorem 6.50).

Additional Suggested Problems. [Not graded]
Problems 6.A \# 4, 8, 12, 19 6.B \# 3, 5, 7, 9

