Math 2R03 (Theory of Linear Algebra)
Due: April 12, 2022

Homework Assignment 9

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the others will be marked for completion. Assignments will be submitted via Crowdmark. You will be graded on your solution and how well you write your proof.

Part A. [Short Questions; 4pts]
Exercise 1. Consider the operator $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$ given by

$$
T(x, y, z)=(x+y, y+z, x+c z)
$$

where c is an unknown constant. Find the value of c so that T is a normal operator.
Exercise 2. Consider the operator $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ given by

$$
T(x, y)=(x-i y, i x+y)
$$

Is the operator T positive? Is the operator T an isometry? Justify each answer.
Part B. [Proof Questions; 6pts]
Exercise 3. Let V be a finite dimensional vector space over F. Let $T \in \mathcal{L}(V)$ be an operator such that $T^{\star}=-T$ (these operators are sometimes called skew-adjoint). Prove that if λ is an eigenvalue of T, then $\lambda=0+b i$ for some $b \in \mathbb{R}$., i.e., λ has no real part.

Hint. Mimic the proof of Theorem 7.13.
Exercise 4. Let $V=\mathbb{C}^{4}$. Suppose that $T \in \mathcal{L}(V)$ has only two distinct eigenvalues, $\lambda_{1}=2022$ and $\lambda=-1$. Further, suppose that the minimal polynomial of T is $p(z)=(z-2022)(z+1)^{2}$. Prove that T is not normal.

Additional Suggested Problems. [Not graded]
Problems 7.A \# 1, 2 (hint: prove contrapositive) $6,77 . \mathrm{B} \# 1,4,5,67 . \mathrm{C} \# 6,7,107 . \mathrm{D} \# 4,5$, 15

