MATH 3375 (Theory of Cryptology) - Fall 2013

Homework Assignment 2

Due: September 26

1. From Section 1.3, do Exercises 3, 5, 7c.
2. From Section 1.4, do Exercises 3, 7
3. From Section 1.5, do Exercises 2 ${ }^{1}$, 3abd, 5
4. Let a, b, and m be positive integers.
(i) Prove that $a x \equiv b(\bmod m)$ has no solution if $\operatorname{gcd}(a, m)$ does not divide b.
(ii) If $\operatorname{gcd}(a, m)=1$, prove that $a x \equiv b(\bmod m)$ has a solution.
(iii) Solve the following congruences, or explain why no solution exists:

$$
\begin{aligned}
4 x & \equiv 7(\bmod 26) \\
4 x & \equiv 8(\bmod 26) \\
5 x & \equiv 17 \quad(\bmod 26) \\
5 x & \equiv 23(\bmod 26)
\end{aligned}
$$

5. The following message was encoded with an additive cipher. Decrypt it:

MZVYDIB DN OJ OCZ HDIY RCVO ZSZMXDNZ DN OJ OCZ WJYT

[^0]
[^0]: ${ }^{1}$ Yes, I know the answer is in the back. This is an important question. AVT

