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Special Instruction

• Only a Casio FX-991 MS or MS Plus calculator is allowed

• All solutions should be written in an exam booklet.

• Do all the questions from Part A. For Part B, do 6 of the 10 questions. There is also
one bonus question.

• The exam is out of 60 points.

• This paper must be returned with your answers.
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PART A. (Do all the questions from this part)

1. [5pts] Give an example (without a proof) of

(i) a group that is abelian, but not cyclic.

(ii) a group of order 10 that is not abelian.

(iii) a ring that is not commutative.

(iv) a ring that has no unity (multiplicative identity).

(v) a ring that is a integral domain, but not a field.

2. [5pts] Determine if the following statements are true or false (no proof needed).

(i) All subgroups are normal.

(ii) A cyclic group is abelian.

(iii) Z is an ideal of Q.

(iv) Every field is an integral domain.

(v) If R and S are fields, then R× S is a field.

3. [2pts] Let a, b, c, d be elements of a group G. Simplify: (ab2)−1(c2a−1)−1(c2b2d)(ad)−2a.

4. [4pts] Consider the following element of S10(
1 2 3 4 5 6 7 8 9 10
2 3 4 1 10 6 8 9 7 5

)
.

(i) Rewrite the above permutation as a product of disjoint cycles.

(ii) Compute the order of this permutation.

5. [4pts] Prove that every subgroup of an abelian group G is normal.

6. [2pts] Explain why Z2017 is an integral domain.

7. [4pts] Define a map f : Z6 → Z2 by f(a) = a, i.e., the class of a in Z6 is sent to the
class of a in Z2. Show

(i) f is a ring homomorphism.

(ii) Compute the kernel of f .

8. [2pts] Use the Division Algorithm to find the remainder of 3x2 + 2x+ 1 when divided
by 2x + 4 over Z5[x]. (Note: the field is Z5, not R!)

9. [2pts] Show that p(x) = 5x5 − 6x4 − 3x2 + 9x− 15 is irreducible over Q[x].
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PART B. (Do six of the following 10 problems)

1. [5pts] Let H be a subgroup of a group G. Show that the set

C(H) = {x | xhx−1 = h for all h ∈ H}

is a subgroup of G.

2. [5pts] Show that the set

Z[
√

2] = {m + n
√

2 | m,n ∈ Z}

is a subring of the ring of real numbers R.

3. [5pts] Let G = SL(2,R) be the special linear group, i.e., the set of all invertible 2× 2
matrices with entries in R and determinant one. Show that the set

H =

{[
1 0
0 1

]
,

[
−1 0
0 −1

]}

is a normal subgroup of G. (Hint:

([
a b
c d

])−1

=

[ d
ad−cb − b

ad−cb

− c
ad−cb

a
ad−cb

]
)

4. [5pts] Suppose that I and J are ideals of a ring R. Show that I ∩ J is also an ideal
of R.

5. [5pts] Let p and q be distinct primes, and suppose that G is a group with |G| = pq.
Suppose that f : G→ H is an onto group homomorphism, but not one-to-one. Prove
that H is abelian. (Hint: First Isomorphism Theorem for Groups.)

6. [5pts] Suppose R is a field and f : R→ S is a ring homomorphism. Prove that either
f is the zero map, i.e., f(r) = 0 for all r ∈ R, or f is one-to-one.

7. [5pts] In class we proved the following statement: If f : R → S is an onto ring
homomorphism, and if I is an ideal of R, then f(I) = {f(r) | r ∈ I} is an ideal of S.
Show that this statement is false if we remove the word “onto”.

8. [5pts] Suppose |G| = 30. Suppose that there is a g ∈ G such that |g| = 6 and the
cyclic group H = 〈g〉 is a normal subgroup of G. Prove that G/H is abelian.

9. [5pts] (Prove Theorem 16.6) Every finite integral domain is a field.

10. [5pts] (Prove Proposition 17.4) Let p(x) and q(x) be polynomials in R[x], where R is
an integral domain. The deg p(x) + deg q(x) = deg(p(x)q(x)).

Bonus [1pt] What was your favourite topic, and why?

END OF TEST
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