Homework Assignment 3

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the other will be marked for completion. Assignments will be submitted via *Crowdmark*.

Part A. [Short Questions; 4pts]

Exercise 1. A prime triple is a 3-tuple of numbers of the form (p, p + 2, p + 6) such that all three numbers are prime. Find a prime triple such that $p \ge 200$.

Exercise 2. Is the Mersenne number M_{19} a Mersenne prime? (You may need a computer to check).

Exercise 3. Find the smallest prime p such that p-1 and p+1 both have at least three distinct prime divisors.

Part B. [Proof Questions; 6pts]

Exercise 4. Show that there are an infinite number of primes of the form 6n + 5. [Hint: try to adapt the proof done in class for the case 4n + 3.]

Exercise 5. Show that for all n > 4, $p_n < p_1 + p_2 + \cdots + p_{n-1}$. Here p_n is the *n*-th prime. [Hint: You may use the following fact without proof: "For any integer *n*, there is a prime number *p* such that n ".