Math 3H03 (Number Theory)
Due: February 6, 2020

Homework Assignment 4

All of the questions from Part A will be graded. One of the questions from Part B will be graded in detail, while the other will be marked for completion. Assignments will be submitted via Crowdmark.

Part A. [Short Questions; 4pts]
Exercise 1. Goldbach's conjectue states that every even number n can be written as $n=a+b$ where a and b are either prime or 1 . For example, $8=3+5$ and $20=17+3$. Verify Goldbach's conjecture for $n=2020$.
Exercise 2. Prove that $53^{103}+103^{53} \equiv 0(\bmod 39)$. [Hint: $14^{2} \equiv 1(\bmod 39)$.]
Part B. [Proof Questions; 6pts]
Exercise 3. Let $n=a_{t} a_{t-1} a_{t-2} \cdots a_{3} a_{2} a_{1} a_{0}$ be the decimal represenation of n. Show that 7 divides n if and only if

$$
7 \mid\left(a_{2} a_{1} a_{0}\right)-\left(a_{5} a_{4} a_{3}\right)+\left(a_{8} a_{7} a_{6}\right)-\cdots
$$

For example, if $n=24,382,681,421$, then $7 \mid n$ since

$$
7|[(421)-(681)+(382)-24] \Leftrightarrow 7| 98 .
$$

Exercise 4. Suppose that $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ is a polynomial such that $f(1)=2$, $f(2)=3$, and $f(3)=5$. Prove that some a_{i} is not an integer.

