Math 3H03 (Number Theory)
Due: February 28, 2020

Homework Assignment 5

All of the questions from Part A will be graded. For Part B, do questions 4 and 5 (one of which will be graded completely and the other for completion) or do question 6. Assignments will be submitted via Crowdmark.

Part A. [Short Questions; 6pts]
Exercise 1. Solve the linear congruence $140 x \equiv 133(\bmod 301)$.
Exercise 2. Consider the polynomial

$$
f(x)=16 x^{11}+13 x^{9}+10 x^{7}+7 x^{5}+4 x^{3}+x .
$$

Find a polynomial $g(x)$ with $\operatorname{deg} g(x) \leq 7$ and $f(x) \equiv g(x)(\bmod 7)$ for all integers x.
Exercise 3. Show that 645 is a pseudo-prime. [HINT: It is clear that $645=5 \cdot 129$ is not prime. Reduce the question to proving $2^{645} \equiv 2(\bmod 5)$ and $2^{645} \equiv 2(\bmod 129)$.]

Part B. [Proof Questions; 6pts]
Exercise 4. (The following problem is due to Regiomontanus 1436-1476.) Find an integer having the remainders $3,11,15$ when divided by $10,13,17$ respectively.

Exercise 5. Let $n=2 p$ with p an odd prime. Show that $a^{n-1} \equiv a(\bmod n)$ for all integers a.
Exercise 6. (For students who have taken Math 3GR3.) Let R be a commutative ring with identity 1_{R}, and let I and J be ideals of R. Suppose also that $I+J=\left\langle 1_{R}\right\rangle$. Consider the map

$$
\phi: R \rightarrow R / I \times R / J
$$

defined by $a \mapsto(a+I, a+J)$. Show that
(a) The map ϕ is a ring homomorphism.
(b) The homomorphism ϕ is surjective. (Try to adapt the proof of Theorem 3.10.)
(c) Show the kernel of ϕ is $\operatorname{ker}(\phi)=I \cap J$.
(d) Use the above results to show that if $\operatorname{gcd}(m, n)=1$, then $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$.

REMARK: Note that by part (d), for any $(a, b) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$, there is exactly one $c \in \mathbb{Z}_{m n}$ that is associated to (a, b). The Chinese Remainder Theorem can be viewed as the procedure by which one can find this c.

