Math 3H03 (Number Theory)
Due: March 13, 2020

Homework Assignment 7

All of the questions from Part A will be graded. For Part B, do questions 3 and 4, one of which will be graded completely and the other for completion. Assignments will be submitted via Crowdmark.

Part A. [Short Questions; 4pts]
Exercise 1. Find all the units of \mathbb{Z}_{30}.
Exercise 2. Prove that $a^{37} \equiv a(\bmod 1729)$ for all integers a. [HINT: $1729=7 \cdot 13 \cdot 19$.]
Part B. [Proof Questions; 6pts]
Exercise 3. Prove that if $\operatorname{gcd}(m, n)=1$, then $m^{\phi(n)}+n^{\phi(m)} \equiv 1(\bmod m n)$.
Exercise 4. Suppose that $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ with all the primes p_{i} distinct. Show that $\phi(n) \geq n / 2^{r}$.

Bonus. Consider the elliptic curve E given by $y^{2}=x^{3}+1$. Show that the only integer pairs (a, b) that satisfy this equation are $(-1,0),(0, \pm 1)$, and $(2, \pm 3)$. [HINT: you will need Catalan's conjecture (now a theorem) to prove this!]

