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1.1

Overview

From June 2-13, 2025, the Fields Institute hosted the Séminaire de Mathématiques Supérieures
(SMS) 2025: An Introduction to Recent Trends in Commutative Algebra. This summer school
capped off the Fields Institute’s Thematic Program in Commutative Algebra and Applications held
from Jan-June 2025.

Over the two weeks, graduate students learned about about core topics and recent advances
in the field of commutative algebra. During the first week, students learned were exposed to
introductory topics such as combinatorial methods in commutative algebra, computation methods in
commutative algebra, characteristic p methods in commutative algebra, and homological methods in
commutative algebra. For each topic, an expert in the area gave three talks and provided numerous
tutorial problems for the students to enhance their understanding of the material. The second week
had a similar schedule, but the topics built upon the material of the first week to talk about recent
developments in the area. Talks given by experts on multigraded modules, Grobner geometry,
Hilbert functions, and new developments in positive characteristic, along with a collection of
tutorials, were the focus of this week.

In this document we have collected together the lecture notes and tutorials from the summer
school. It was evident as the school progressed that the lectures provided a great introduction to
some of the key topics and current research in the area. Having the lectures and tutorials in a single
document would of be a great benefit to the wider community.

While it would have been nice to collect all of this material into a polished book (this was
actually discussed over a couple of dinners!), we have elected to simply combine all the lecture
notes. What you will find are the instructors notes for their lectures. In some cases, the lecture
notes are quite polished, while in some cases, we have simply included the instructor’s handwritten
notes. For some of the lectures, we have simply included some notes provided by students in the
audience. As an aside, most of the lectures can viewed on the YouTube channel of Fields if you
want to watch the original talks.
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Figure 1.1: The organizers: Sergio Da Silva, Megumi Harada, Fred Galetto, Adam Van Tuyl, Elena
Guardo, Patricia Klein (I. to r.)

We want to stress that these are lecture notes, and as such, are not polished and thoroughly
proofread. This document can be used to learn about some exciting areas of commutative algebra.
We encourage you to cite the original sources if you need any of the facts presented in this document,
instead of citing this document.

We wish to extend a special thank you to many of the people who made this workshop a
success. We first would like to thank all the speakers: Christine Berkesch, Sergio Da Silva, Sara
Faridi, Federico Galetto, Elena Guardo, Jack Jeffries, Patricia Klein, Claudia Miller, and Adam
Van Tuyl. The instructors not only gave great talks, but they were happy to share their material
for this document. We would also like to thank Anna Brosowsky, Lauren Cranton Heller, Janet
Page, and Henry Potts-Rubin for their help as TAs and Faculty Advisor during the workshop. We
would also like to thank the Fields Institute in Toronto, Canada and their staff for their help. We
also would like to thank the following organizations for their financial support: Combinatorial
Commutative Algebra in Canada, Centre de Reserches Mathématiques, Fields Institute, Institut
des sciences mathématiques, PIMS, SLMath, and the Tutte Institute. Finally, a thank you to all the
students who made this a great experience.

Sergio Da Silva,

Fred Galetto,

Elena Guardo,

Megumi Harada,

Patricia Klein,

Adam Van Tuyl

Organizers of the SMS Workshop
July 2025
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1.2 School Schedule

School Schedule

Here is a copy of the schedule of the summer school. (ChatGPT was used to convert the schedule
as given on the Fields website into usable Latex code — errors may be present!)

12:15

gebra (Problem session 1)
Free Afternoon

Date Time Event Speaker
Monday,  June | 09:00-09:30 Registration
2nd, 2025
09:30-10:20 Characteristic p Methods in Commutative | Jack Jeffries, Uni-
Algebra (Talk) versity of Nebraska-
Lincoln
10:30-10:45 Coftfee Break
10:45-12:15 Characteristic p Methods in Commutative | Jack Jeffries, Uni-
Algebra (Problem session 1) versity of Nebraska-
Lincoln
12:15-14:15 Lunch (on your own)
14:15-15:05 Homological Methods in Commutative Al- | Claudia Miller, Syra-
gebra (Talk 1) cuse University
15:15-15:30 Coffee Break
15:30-17:00 Homological Methods in Commutative Al- | Claudia Miller, Syra-
gebra (Problem session 1) cuse University
17:30 Prenup Pub
Tuesday, June 3rd, | 09:30-10:20 Computational Methods in Commutative | Federico Galetto,
2025 Algebra (Talk 1) Cleveland State
University
10:30-10:45 Coftfee Break
10:45-12:15 Computational Methods in Commutative | Federico Galetto,
Algebra (Problem session 1) Cleveland State
University
12:15-14:15 Lunch (on your own)
14:15-15:00 Homological Methods in Commutative Al- | Claudia Miller, Syra-
gebra (Talk 2) cuse University
15:00-15:15 Coffee Break
15:15-16:00 Characteristic p Methods in Commutative | Jack Jeffries, Uni-
Algebra (Talk 2) versity of Nebraska-
Lincoln
16:00-16:10 Break
Wednesday, June | 09:30-10:20 Combinatorial Methods in Commutative Al- | Sara Faridi, Dal-
4th, 2025 gebra (Talk 1) housie University
10:30-10:45 Coftfee Break
10:45-12:15 Combinatorial Methods in Commutative Al- | Sara Faridi, Dal-

housie University
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Thursday, June

5th, 2025

09:30-10:20

10:30-10:45
10:45-12:15

12:15-14:15

14:15-15:05

15:15-15:30
15:30-17:00

Characteristic p Methods in Commutative
Algebra (Talk 3)

Coffee Break
Characteristic p Methods in Commutative
Algebra (Problem session 2)

Lunch (on your own)

Homological Methods in Commutative Al-
gebra (Talk 3)

Coffee Break

Homological Methods in Commutative Al-
gebra (Problem session 2)

Jack Jeffries, Uni-
versity of Nebraska-
Lincoln

Jack Jeffries, Uni-
versity of Nebraska-
Lincoln

Claudia Miller, Syra-
cuse University

Claudia Miller, Syra-
cuse University

Friday, June 6th, | 09:30-10:20 Combinatorial Methods in Commutative Al- | Sara Faridi, Dal-
2025 gebra (Talk 2) housie University
10:30-10:45 Coffee Break Group Photos
10:45-12:15 Combinatorial Methods in Commutative Al- | Sara Faridi, Dal-
gebra (Problem session 2) housie University
12:15-14:15 Lunch (on your own)
14:15-15:05 Computational Methods in Commutative | Federico Galetto,
Algebra (Talk 3) Cleveland State
University
15:15-15:30 Coffee Break
15:30-17:00 Computational Methods in Commutative | Federico Galetto,
Algebra (Problem session 2) Cleveland State
University
Monday, June 9th, | 09:30-10:20 Homological Invariants of Points in Projec- | Adam Van Tuyl, Mc-
2025 tive Space (Talk 1) Master University
10:30-10:45 Coffee Break
10:45-12:15 Homological Invariants of Points in Projec- | Elena Guardo, Uni-
tive Space (Problem session) versita di Catania,
Adam Van Tuyl,
McMaster University
12:15-14:15 Lunch (on your own)
14:15-15:05 Multigraded Modules (Talk 1) Christine Berkesch,
University of Min-
nesota
15:15-15:30 Coffee Break
15:30-17:00 Multigraded Modules (Problem session) Christine Berkesch,

University of Min-
nesota
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Tuesday, June

10th, 2025

09:30-10:20

10:30-10:45
10:45-12:15

12:15-14:15
14:15-15:05

15:15-15:30
15:30-17:00

Grobner Geometry and Applications (Talk
1)

Coftfee Break

Grobner Geometry and Applications (Prob-
lem session)

Lunch (on your own)

New Developments in Positive Characteris-
tic Commutative Algebra (Talk 1)

Coffee Break

New Developments in Positive Characteris-
tic Commutative Algebra (Problem session)

Sergio Da Silva, Vir-
ginia State University

Sergio Da Silva, Vir-
ginia State University,
Patricia Klein, Texas
A&M University

Daniel Hernandez,
University of Kansas

Daniel Hernandez,
University of Kansas

Wednesday, June | 09:30-10:20 Homological Invariants of Points in Projec- | Elena Guardo, Uni-
11th, 2025 tive Space (Talk 2) versita di Catania
10:00-10:15 Coffee Break
10:15-10:45 Multigraded Modules (Talk 2) Christine Berkesch,
University of Min-
nesota
10:45-11:00 Break
11:00-11:30 Grobner Geometry and Applications (Talk | Patricia Klein, Texas
2) A&M University
11:30-11:45 Break
11:45-12:15 New Developments in Positive Characteris- | Daniel Herndndez,
tic Commutative Algebra (Talk 2) University of Kansas
12:15 Free Afternoon
Thursday, June | 09:30-10:20 Homological Invariants of Points in Projec- | Elena Guardo, Uni-
12th, 2025 tive Space (Talk 3) versita di Catania
10:30-10:45 Coffee Break
10:45-12:15 Multigraded Modules (Talk 3) Christine Berkesch,
University of Min-
nesota
11:45-13:45 Lunch (on your own)
13:45-14:35 Free choice problem session
15:15-15:30 Coffee Break
15:30-16:30 Professional development panel
16:30-17:00 Optional: further professional development
in small groups
Friday, June 13th, | 09:30-10:20 Grobner Geometry and Applications (Talk | Sergio Da Silva, Vir-
2025 3) ginia State University,
Patricia Klein, Texas
A&M University
10:30-10:45 Coffee Break
10:45-11:35 New Developments in Positive Characteris- | Daniel Herndndez,
tic Commutative Algebra (Talk 3) University of Kansas
11:45-13:45 Lunch (on your own)
13:45-15:15 Free choice problem session
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1.3 School Participants

First Name | Last Name | Institution
Sergio Da Silva Virginia State
Fred Galetto Cleveland State
Elena Guardo University of Catania
Megumi Harada McMaster University
Patricia Klein Texas A&M
Adam Van Tuyl McMaster University
Table 1.1: Organizers/Instructors
First Name | Last Name | Institution
Christine Berkesch University of Minnesota
Sara Faridi Dalhousie University
Jack Jeffries University of Nebraska
Claudia Miller Syracuse University
Daniel Hernandez | University of Kansas
Table 1.2: Instructors
First Name | Last Name Institution
Anna Brosowsky University of Nebraska
Lauren Cranton Heller | University of Nebraska
Janet Page North Dakota State
Henry Potts-Rubin Syracuse University

Table 1.3: Faculty Mentor and TAs
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Sara Asensio University of Valladolid (Spain)
Paulo Assis Federal University of Rio de Janeiro
Isidora Bailly-Hall University of Minnesota

Rabeya Basu IISER Pune

Manav Batavia Purdue University

Anna Berg-Arnold North Dakota State University
Kieran Bhaskara McMaster University

Jacob Bucciarelli Kansas State University

Eduardo Camps Virginia Tech

Anna Natalie | Chlopecki Purdue University

David Crosby University of Arkansas

Mike Cummings University of Waterloo

Caitlin Davis University of Wisconsin-Madison
Will DeGroot Dartmouth College

Erin Delargy Duke University

Kara Fagerstrom University of Nebraska-Lincoln
Julianne Faur University of Nebraska-Lincoln
Cole Franklin University of Toronto

Mario Gonzélez-Sanchez | Universidad de Valladolid

Amogh Gupta University of Oklahoma

Valentin Havlovec Graz University of Technology
Haoxi Hu Tulane University

Tom Huh Pohang Science and Technology University
Ryan Hunter University of Kansas

Robert Ireland University of Nebraska-Lincoln
Siddhant Jajodia University of California, Irvine
Pooja Sandeep | Joshi Texas A&M University

Parian KHEZERLOU Sorbonne Université / Université Paris Cité
Illya Kierkosz McMaster University

Elizabeth Kodpuak Portland State University

Allison Kohne George Mason University

Stephen Landsittel University of Missouri

Jounglag Lim Clemson University

Hiram Lopez Virginia Tech

Dipendranath | Mahato Tulane University

Aryaman Maithani University of Utah

Boyana Martinova University of Wisconsin - Madison
Julia McClellan Queen’s University

Kesavan Mohana Sundaram | University of Nebraska Lincoln
Benjamin Mudrak Purdue University

Emma Naguit McMaster University

Emma Pickard University of Kentucky

Ana Podariu University of Nebraska-Lincoln
Henry Potts-Rubin Syracuse University

Table 1.4: Students
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Johnny Rivera, Jr. Virginia Polytechnic Institute and State University
Giorgio Maria | Rizzo Universita degli Studi di Catania
Colleen Robichaux University of California, Los Angeles
Sharon Robins Simon Fraser University

Sandra Maria | Sandoval Gomez | University of Notre Dame

Alex Scheftelin Columbia University

Giovanni Secreti New Mexico State University
Aniketh Sivakumar Tulane University

Kian Soares Da Costa | Dalhousie University

Caylee Spivey University of Connecticut
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Maggie Young University of Missouri-Kansas City
Cleve Young University of Nebraska

Zongpu Zhang Berlin Mathematical School

Albert Zhang University of California, Santa Cruz

Table 1.5: Students
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2.1

2.2

This course covered the basics about the connection between simplicial complexes and monomial
ideals via the Stanley-Reisner and facet ideal constructions. Students learned how to use this
dictionary between combinatorial algebraic topology and commutative algebra. This course was be
taught by Sara Faridi (Dalhousie)

Video Links

You can watch the original lectures using the following links:
e Lecture 1 Video
e Lecture 2 Video

Lecture Notes and Tutorials

The following lecture notes and tutorails are bases on Sara’s lectures. The typed notes were provided
by Stephen Landsittel


https://youtu.be/OgBoyF4kAeE
https://youtu.be/qFdzX9d_eKU

1. INTRODUCTION

These are notes taken (verbatim or paraphrased) from a series of two lectures
by Sarah Faridi at the Fields Institute in Toronto Canada in June of 2025.

We study the combinatorical and algebraic considerations involving edge and
facet ideals and their related constructions in Stanley-Reisner theory. This study
involves a combination of commutative algebra, combinatorics, and algebraic topol-

ogy.
TABLE 1. Methods

Field Characteristic Plays a Role | Discrete (Counting)

Stanley-Reisner Theory Edge Ideals
(Hochster’s Formula)

Facet Ideals
Clutters

1.0.1. Background in Combinatorics.

We define the basic objects which are useful in algebraic and topological study
of simplicial complexes.

Following the standard convention in combinatorics, a (simplicial) complex A on
a (finite) set V' is a set of subsets of V' which is closed under subsets, and contains
(). Sets in A are called faces and maximal faces are called facets. The dimension
of a face W € A is #W — 1 and the dimension of a complex A is the maximal
dimension of its facets. The convention that the empty set has dimension —1 is
useful for homology. For positive integers n we denote the set {1,...,n} by [n].
Say that a complex A is a complex on [n] if every element of [n] appears in a face
of A (this convention can vary based context or purpose).

Definition 1.1. Let A be a complex on V := [n]. For o € A we define the link,
deletion, and star of o (respectively)

lkn(o) ={a€A|onNa=0, aUc € A}
delp(o) ={a e A]lona=10}
sta(o) ={a € A|laUc € A}.
We see that lka(o) = sta(o) N dela(o).
Notation 1.2. Let k be a field and let n be a positive integer. Let R = k[z1, ..., z,)

be the polynomial ring. For a squarefree monomial ideal I C R, the Stanley-Reisner
(SR) complex of I is complex

N(I) :={W Cn] [ 2w ¢ I}

of nonfaces of I. If A is a complez on [n] then we the SR ideal of A is the squarefree
monomial ideal

Iz = {:UW1| W ¢ A}
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of nonfaces of A. We define the facet ideal of a squarefree monomial ideal I
F(I):= (W C [n] | zw is a generator of I).

Definition 1.3. Let A be a simplicial complex on [n] vertices we define the facet
ideal F(A) of A to be the squarefree monomial ideal generated by the facets of A.
That 1is,

F(A):= (zp | F € A is a facet ).
Remark 1.4. Let G be a graph on n vertices (write V(G) = [n]). G is the complex

whose facets are the edges in G. In fact, it is not hard to see that F'(Ig) is the
complex G.

1.1. Vertex Covers.

Throughout this subsection (and the rest of this document), n will be a positive
integer.

Notation 1.5. Let A be a complex on [n]. We often consider the compliment of
A
AN:={W:=[n]\W|WeA}

which is the complex of compliments of A’s faces.

Definition 1.6. Let A be a complez on [n] a minimal vertex cover of A is a subset
A C [n] which is minimal (under inclusion) intersecting every facet of A.

The complex whose facets are the minimal vertex covers of A is denoted by Ayy.
We have (Ay)y = A. Moreover we see fairly quickly that (F(I))y = N (I) where
I is a squarefree monomial ideal.

1.2. Alexander Duals.

Definition 1.7. Let A be a simplicial complex on [n]. We define the Alexander
Dual of A to be the complex of complements of the nonfaces of A

AV :={cCn]|7 ¢ A}

We see that (for any complex A) (AY)Y = A. For a squarefree monomial ideal
I we define the Alezander Dual of I as the ideal

IV = F(Fy)
where F':= F'(I). We have that IV = Iy(pv.

Remark 1.8. (Some properties in Stanley-Reisner theory)
Let A be a simplicial complex on [n] and let I be a squarefree monomial ideal in
R. We have the following relationships.
(i) F(F() = Ivay = 1.
(il) N(I)Y = F(I).
(itl) (F'(I))p = N(I).
(iv) AW =A. and IV =1

For a monomial ideal I C R we shall denote its polarization by I* C R* (where R*
depends on [). If I is already squarefree then we have a natural ring isomorphism
R* — R (z;1 — a; for all i) mapping I* to I.
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Theorem 1.9. Let I C R be any monomial ideal. Then I has a linear resolution
if and only if E := A(I*)Y is Macaulay.

2. HoMoLOGY

2.1. Algebraic topology background. Recall that (per standard combinatori-
cal convention) we require that (abstract simplicial) complexes contain ) (as in {0}
is the smallest complex) and the dimension of the face () is —1 by convention.

Definition 2.1. Let A be a complex and let k be a field. Fori > —1, we denote the
k-vector space spanned by the (formal) i-dimensional faces of A by C; := Ci(A, k).
Thus, C_1 = 0. We have k-linear maps for i > 1

Oit1: Cip1 = G

I+1 o~
Tj1---Tjit2 = E (—1) Tj1...Tp...Tjiq2
l

which maps faces to their boundaries.

Remark 2.2. Take the notation of Definition 2.1 and let d = dim(A). We have
that C; = 0 for ¢ > d and the sequence

Co=10—Cp 2 cpy 220 2 00 2 0y 5 0

is a chain complex concentrated only in homological degrees {0, 1, ..., d}. We recall
from algebraic topology that the complex A has i*" reduced (simplicial) homology

Hy(A k) := Hy(A) := H;(Cy) = ker(8;) /im(Di11)
fori=—-1,...,d—1.
The " homology is given by the i-dimensional holes in A. For instance, a

simplex (by definition) has no holes, and hence no homology. On the other hand,
the outer triangle

A = (ab, ac,bc) C (abe)

has homology in top dimension d = 2.

2.2. Cohen—Macaulayness.

Definition 2.3. We say that a complex A is Cohen—Macaulay over k if ITIi(A, k) =
0 fori < d.

Say that a complex A is Cohen—Macaulay if it is Cohen—Macaulay over every
field.

Take a field k and a squarefree monomial ideal I C R := k[xq, ..., x,].

Definition 2.4. We will say that the ideal I of R is Cohen—Macaulay if R/I is
Cohen—Macaulay as a standard graded ring (that is, the Krull dimension dim R/I
of the ring R/1 equals depthR/I := depth,,, R/I, where m := R, ).
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Theorem 2.5. (Reisner’s Criterion)
I 1s Cohen—Macaulay if and only if

dimy, (H; (e (ry (o)) = 0
for i < dimy,(lknry(0)) and o € N(I).
A complex is called pure if all of its facets have the same dimension.
Remark 2.6. A Cohen—Macaulay complex is pure.
Proof. The statement follows from Reisner’s Criterion. U
Definition 2.7. A complex A is called a homology sphere if and only if
Hi(lha (0)) = {1 i = dim lka(o) for o € A

0 otherwise
Reisner’s Criterion implies the following statement.
Corollary 2.8. A homology sphere is Cohen—Macaulay.

Remark 2.9. If I € R is Cohen—Macaulay, then the Stanley-Reisner complex
N(I) is pure, and the facet complex F'(I) is pure.

Remark 2.10. Suppose that A is a pure complex. Then all minimal vertex covers
of A have the same size

Example 2.11. The triangle with a single whisker

{a,b,c},{c,d})

is not Cohen—Macaulay.

Theorem 2.12. (Froberg)
A graph G is cochordal if and only if I has resolution if and only if every power
of Ig has linear resolution if and only if I has linear quotients.

Problem 2.13. Let I C R be a monomial ideal. Show using Reisner’s Criterion
that if T := N(I) is Cohen—-Macaulay, then T is pure.

3. STRONGER PROPERTIES

Recall that a complex A is called pure if all of its facets have equal dimension
(or equivalently, cardinality).

Remark 3.1. Let I be a squarefree Cohen-Macaulay monomial ideal. Then I is
unmixed (i.e. all minimal primes of I have the same height), which is equivalent
to saying that all minimal vertex covers of F'(I) have the same size. On the other
hand, if A is a complex, then F(A) is pure if and only if all of the (minimal
monomial) generators of I have the same degree.

Remark 3.2. (see the exercises from Claudia’s lectures) There is a (simplicial)
complex A which is Cohen—-Macaulay over every field, but is not shellable.

3.1. Whiskering and Grafting.

Remark 3.3. Let A be any complex and let A’ be any whiskering or grafting of
A. Then the facet ideal F(A’) is Cohen—Macaulay.
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3.2. Vertex Decomposability. If A is a complex with vertex set V and v € V
appears in some facet of A, then we will say that v is a vertex on A. Recall that
(per the usual combinatorical convention, we require that complexes contain ) (as,
in the smallest possible complex is {0}). If A is a complex, we might abuse notation
and write A = () to indicate that A = {0}.

Definition 3.4. Suppose that A is pure complex. We say that A is vertex decom-
posable if and only if one of the following conditions holds
(1) A is a simplex or {0}
(2) There is a vertex v on A such that lka(v) and delp(v) are pure vertex
decomposable.

If A is any complex and v is any vertex on A satisfying (2), then we say that v is
a shedding vertex of A.

Example 3.5. The path on 4 vertices
{({a,0},{b,c},{c,d})
is vertex decomposable.

Remark 3.6. Let A be a complex and let A’ be a whiskering or grafting of A.
Then F'(A’) is Cohen—Macaulay.

Question 3.7. (open, paraphrased)
What are the facet complex counterparts of shellability and vertex decomposability?

Let k be a field and take a squarefree monomial ideal I C R := k[z1, ..., z,)].
Theorem 3.8. (Eagen-Reiner) I is Cohen—Macaulay if and only if
IV (= Inwyv) has a linear resolution.

Remark 3.9. If I is Cohen—Macaulay, then it is unmixed (as in, all minimal primes
of I have the same height and hence I has no embedded primes), which is equivalent
to all vertex covers of F'(I) having the same size. On the other hand, we have for
complexes A that F'(A) is pure if and only if all of the minimal generators of [
have the same degree.

4. COMPUTATION OF BETTI NUMBERS

Let n be a positive integer, let k& be a field, and let R = k[zy,...,x,] be the
polynomial ring. Let I C R be a squarefree monomial ideal.

Definition 4.1. I has associated multigraded Betti numbers for each monomial
m € R, which we may define using Hochster’s formula

Bim 1= Bim(R/T) := dimy, (H;_o(lene(1)v (Tom)); &)
where oy, is the set of indices i in [n] such that x; supports m (and @, is the
compliment of o).

Theorem 4.2. For all i and j, we may compute the Betti number B; ; as follows

Bis(I) = > Bim ()

mé&lem(I), deg(m)=j
where lem(I) is the lem lattice of I.



Using Hocster’s formula we can apply topological methods (namely discrete ho-
motopy theory, e.g. collapses) to compute 5;,,(/) as the dimension (as a vector
space over a given field k) of the reduced homology over & (in a suitable degree) of
some topological object.

5. EXERCISES

5.1. Day 1 Exercises.

Problem 5.1. Let K be a field and let R = K[z1,...,x,]. Anideal I C R is called
a monomial ideal if it can be generated by monomials. Suppose that I C R is a
monomial ideal. Show that there is a unique set of minimal monomial generators

of I.
Problem 5.2. Let A be a complex. Show that Ap(:= (An)n) equals A.

Let n be a positive integer. Fix a field K and let R = K[xq,...,z,] be the
polynomial ring.

Problem 5.3. Let I be a monomial ideal. Show that the compliment of the Stanley-
Reisner complex of I C R equals Ay where A is the facet complex F(I) of 1

Problem 5.4. Let A be a complex and consider its facet ideal F' := F(A). Show
that the minimal primes of F are generated by the minimal vertex covers of A.

Problem 5.5. Let A be the hollow triangle
A= <{17 2}7 {27 3}7 {37 1}>

Show that A is Cohen—Macaulay using Reisner’s Criterion.

Problem 5.6. Let A be path on /4 vertices

A= ({1,2},{2,3},{3,4})

Show that A is Cohen—Macaulay using Reisner’s Criterion.

Problem 5.7. Let F' C R = K|[xy,x9,x3,24] be the facet ideal of the complex A :=
({1,2},{2,3},{3,4}). Use Reisner’s criterion to show that depthR/F = dim R/F
(as in, that F' is Cohen—-Macaulay).

Problem 5.8. Let A be a complez. Let 0; : Ci(A; K) — Ci1(AK),i=0,...,d
be the differentials of the simplicial homology Ce(A; K) of A. Show that 0;0;41 = 0
fori=0,...,d—1.

5.2. Day 2 Exercises. Let n be a positive integer. Fix a field K and let R =
K|xy,...,x,] be the polynomial ring.

Problem 5.9. Let I C R be a Cohen—Macaulay ideal. Show that the Stanley
Reisner Complex of I is pure using Reisner’s Criterion.

Problem 5.10. Let A be the solid triangle with a leaf
A= (1,23}, {1,4}).
Why is A not a grafted complex (i.e. why is A not a grafting of another complex)?

Problem 5.11. Find a complexr A which is not grafted but has the property that
the facet ideal F'(A) is Cohen—Macaulay.
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Problem 5.12. (Open) Let I C R be a squarefree monomial ideal such that the
Stanley-Reisner complex of I is shellable (vertex decomposable, respectively), what
does the facet complex of I look like (in each case)?

Problem 5.13. Which graphs are shellable? (A graph G is the complex whose
facets are its edges).

Problem 5.14. Let A be path on 4 vertices
A= ({1,2},{2,3},{3,4})
Show that A is vertex-decomposable.

Problem 5.15. (fun and probably unknown) Test extensions of Froberg’s Theorem
on edge ideals of graphs with linear resolution to monomial ideals generated in
degree three (see Claudia’s Example 4 from her June 5th lecture).



3.1

3.2

Grobner bases are the underlining tool used to perform computations in commutative algebra and
algebraic geometry. This course introduced the basic results of Grobner bases, and explained their
importance in computational commutative algebra. Students also learned how to use computer
algebra systems to compute these bases. This course was be taught by Federico Galetto (Cleveland
State)

Video Links

You can watch the original lectures using the following links:
e Lecture 1 Video
e Lecture 2 Video
e Lecture 3 Video

Lecture Notes and Tutorials

We have included copies of Fred’s lecture notes and his tutorials, which were provided by Fred.
Note that Fred’s tutorial questions are within these notes.


https://youtu.be/_fDeRiCPfLc 
 https://youtu.be/K93wkWG72N4
 https://youtu.be/94bzaCeDc-w

Computational Methods

These notes are written by Federico Galetto (Cleveland State University) for the mini-course on Computational
Methods in Commutative Algebra at the Séminaire de Mathématiques Supérieures (SMS) 2025: An Introduction to
Recent Trends in Commutative Algebra. You can contact the author at f.galetto@csuohio.edu.

References

Cox, Little, O'Shea - Ideals, Varieties and Algorithms

Eisenbud - An Introduction to Commutative Algebra with a View Towards Algebraic Geometry
Kreuzer, Robbiano - Computational Algebra 1

Ene, Herzog - Grébner Bases in Commutative Algebra

Adams, Loustaunau - An Introduction to Grébner Bases

Day 1
Motivational problems

Let R = klzy,...,z,] be a polynomial ring over a field k. Let I = (f1,..., f;) C R be an ideal. We are interested in
the following problems.

Given f € R, determine if f € I.
If felI findgy,...,q. € Rsuchthat f =" q;f;.
Given an ideal J of R, determine if I = J.

Let V(I) denote the vanishing locus of I in the affine space Af. Knowing that f € I tells us that f vanishes on all
points of V(I). Checking ideal equality is useful when the same ideal is given two different generating sets. Also,
I = J implies the equality of vanishing loci V(I) = V(J) (the converse is false).

Given f € R, how should we represent the coset f + I in the quotient ring R/I?
Given f,g € R, determine if f+ I =g+ I.

Find a basis of R/I as a k-vector space.

For example, the classes in the quotient ring Z/(m) can be represented by the integers 0,...,m — 1.
Geometrically, a polynomial f € R determines a polynomial function V(I) - k. When f+I=g+1I, the
polynomials f and g determine the same function on V(I). Finding bases of R/I allows us to use linear algebra to
study geometric properties of V(I) such as dimension and degree.



Univariate case

Before tackling these problems in full generality, it useful to focus on the one variable case Kk[z]. In this case, we
can use the fact that k[z] is a Euclidean domain.

0% Theorem

For every f,g <€ K[z] with g # 0, there exist unique g, € k[z] (called quotient and remainder, respectively)
such that f = gg+ r and » = 0 or deg(r) < deg(g).

Here deg(g) denotes the largest power of the variable = appearing in g with a nonzero coefficient. In other words, if
deg(g) = d, then

with cq # 0. We call cgz? the leading or initial term of g and we call ¢4 the leading coefficient.

The long division algorithm gives an effective way to construct ¢ and r given f and g. From here, we can solve the
problems above. For example, letting I = (g), we have:

feIifandonlyifr=0;
if f € I, then f = qg where the unique g can be found explicitly;
f+I=r+1, sowe can choose the remainder as the standard representative modulo I;

assuming deg(g) = d, the elements 1 + I,z + I,z + I,..., 2% 4 I form a k-basis of K[z]/I.

Monomial orderings

The first thing we do when dividing f by g is line out their terms from highest to lowest degree. A multivariate
division algorithm would require a similar step, but how should we order terms of a polynomial in two or more
variables?

A monomial in R = K[z, ...,z,] is an element of the form z* = z{'z3* - - -z with a = (a1, as,...,a,) € N* (note:
0 €N). We set |a| =a1 + a2+ -+ an, SO deg(z®) = |a]. Some sources say term instead of monomial; other
sources use the word term for polynomials cm where 0 # ¢ € k and m is a monomial.

(@ Definition

A monomial ordering on the polynomial ring R = K[z1,...,z,] is an order (meaning reflexive, antisymmetric,
and transitive) relation < on the set of monomials in R satisfying the following properties.

It is total: for all monomials m; # ma, we have m; < ma or ma < mj.
It is compatible with multiplication: for all monomials my, my, ms, if m; < msy, then m;ms; < myms.

Has 1 as its minimum: for all monomials m # 1, we have 1 < m.

Here are a few notable monomial orderings.



{4 Example: Lexicographic Order (Lex)

We write 2 >1.c x° in the lexicographic order if the first nonzero entry of the vector a — b is positive. When
we use different letters such as z,y, z for variables, the lexicographic order is simply the alphabetical order,
so z > y > z. However, as a result, the lexicographic order ignores degrees, so you end up with z > ',

{4 Example: Graded Lexicographic Order (GLex)

We write 2® >grex 2° in the graded lexicographic order if |a| > [b], or |a| = |b] and z?@ >p1e b, Thus, the
graded lexicographic order prioritizes degree, and then uses the lexicographic order to break ties.

{4 Example: Graded Reverse Lexicographic Order (GRevLeXx)

We write £® >greviex 20 in the graded reverse lexicographic order if |a| > |b|, or |a| = |b| and the rightmost
nonzero entry of the vector a — b is negative. The name is related to the fact that on monomials of the same
degree this is the reverse of the (graded) lexicographic order if the order of the variables is reversed.

Here is the same polynomial written from largest to smallest term in the orders above.

Using Lex: z* + z3y?2* + zy°23

Using GLex: z3y22* + zy°2% + z*
Using GRevLex: zy°23 + z3y%2* + z*

Although Lex and GLex seem a little more natural and have their applications, there are practical reasons for
working with GRevLex (which is the default in software like Macaulay?2).

Fix a monomial ordering on R = K[z1,...,z,] and let f € R.

The largest monomial appearing with a nonzero coefficient in a polynomial f is called its leading monomial; we
denote it LM(f).
The coefficient of the leading monomial is called the leading coefficient of f; we denote it LC(f).

The product of the leading coefficient and the leading monomial gives the leading term of f; we denote it
LT(f), so we have LT(f) = LC(f) - LM(f).

The words monomial and term are some times interchanged in the literature; also, some sources refer to leading
terms/monomials as initial or head terms/monomials.

Multivariate division

(0< Theorem

Consider an ordered collection of polynomials F = (fi,...,f;) € R® where R =K|zy,...,z,] and fix a
monomial ordering on R. For every f € R, there exist ¢;,...,q,,7 € Rsuchthat f=3""  q;f; +7, and r =0
or r is a k-linear combination of monomials none of which are divisible by any of LM(f;), . .., LM(f,).



The element r is known as the normal form of f upon division by F.

& Division algorithm
To construct q1, . .., qs and r, we initially set them equal to 0, then proceed as follows.

Find the smallest : such that LM( f;) divides LM(f), if any, then go to step 2; otherwise, go to step 3.
Replace ¢; by ¢; + LT(f)/ LT(f;) and f by f — (LT(f)/LT(f;))f: then go to step 4.

Replace r by r + LT(f) and f by f — LT(f), then go to step 4.

If f =0, then stop and return gy, ..., q,,r; otherwise, go back to step 1.

For example, suppose we want to divide f = 22y2 —y3 by f; = y? — z and f, = zy — 1 in GLex. We can write out
the division algorithm using the format of long division. We highlight terms added to r.

y? —a | 22y? —y

xy —1|2%y? —x

Therefore, we get ¢; = 22 —y, ¢, = —1, and » = z® — 1. However, notice what happens if we swap f; and f,.

Y
Y
zy —1 x2y2 —y3

y? —x | x%y? —xy
—y° +ay
—y3 +xy
0

In this case, we get ¢; = zy, g5 = —y, and r = 0; it follows that f = zyf, — yf1 € (f1, f2). This shows the remainder
is not uniquely determined, so it cannot be used to test ideal membership. As it turns out, the fault for this behavior
is not in the remainder or in the algorithm, but in the tuple F' we are dividing by.

Grdbner bases
We adopt the following working definition. We will later provide equivalent characterizations.
() Definition

Let R = K[z, ...,z,] and fix a monomial ordering on R. A tuple G = (g4, .-.,9s) € R® of nonzero elements is
a Grobner basis if for every f € R there is a unique r € R with the following properties:

f=>:14qg9;+rforsomegq,...,q; € R;
r = 0 or no term of r is divisible by any of LM(g1), . .., LM(gs).



If I ={(g1,...,9s) Isthe ideal generated by the elements in G, we call G a Grobner basis of I.

The r in this definition can be computed using the division algorithm. Since R contains infinitely many elements,
the definition above is hard to use in practice, so we need a different way to recognize a Grébner basis.

(@ Definition
Consider nonzero polynomials f,g € R = K[z, ..., z,]. The S-polynomial of f and g is
lem(LM(f),LM(g)) .  lem(LM(f), LM(g))
S5(f,9) = f= g
(59 LT(/) LT()

where lcm denotes the least common multiple.

The S-polynomial S(f, g) is designed to produce a cancellation of leading terms. Notice also that S(f, g) € (f, g).
For example, consider the polynomials fi=y?>—z and fo=zy—1 in GlLex. We have
lem(LM(f1), LM(f2)) = lem(y?, zy) = zy>. Therefore, the S-polynomial of f1, f is

X 2 X 2
S(f1, f2) = y—%(ytw)—x—yy(wy—l) =z’ —a’ —zy’ +y= -2’ +y

(0% Theorem (Buchberger's Criterion)

Let R = K[z1,...,z,] and fix a monomial ordering on R. A tuple G = (g1, ...,9s) € R® of nonzero elements is
a Grobner basis if and only if for all ¢ # j the remainder of S(g;, g;) upon division by G is zero.

The previous computation shows that F' = (f1, f2) is not a Grobner basis because the remainder of S(f1, f2) upon
division by F is nonzero. However, if we let f3 = S(f1,f2), we can use Buchberger's criterion to show that
G = (f1, f2, f3) is a Grobner basis of (f1, f2).

Finding Grobner bases

Now the question is: does every ideal I C R = K|z, ...,z,] admit a Grébner basis? The answer is yes! In fact, a
Grdbner basis of an ideal can be constructed using a procedure due to Bruno Buchberger.

& Buchberger's Algorithm
To construct a Grobner basis of I = (f1,..., fs), set G = (f1, ..., fs) and proceed as follows.

For each pair {p, ¢} in G with p # g, compute the remainder of S(p, ¢) upon division by G. Go to step 2.
If all remainders computed in step 1 are zero, stop and return G; otherwise, add all nonzero remainders
to G and go back to step 1.

Buchberger's Criterion ensures that this algorithm returns a Grobner basis. Of course, one should still prove that
this algorithm terminates in a finite number of steps. The algorithm above is designed to be simple but is not very
efficient; however, one can introduce several optimizations. In addition, there are other algorithms that can be
used to compute Grobner bases (Hilbert drives, Faugére's F,, signature-based) and algorithms that convert



Grobner bases between different monomial orders (FGLM, Grébner walk). There are also algorithms that will
compute Grébner bases of special families of ideals, such as the Buchberger-Méller algorithm for ideals of points.

Special generation

We conclude this discussion with another property that characterizes Grobner bases. This property will be
analyzed further on Day 3.

Consider again the polynomials f; = y* — z and f» = zy — 1 in GLex. We observed that

f=—-2+y=afi—yfr € (f1,f2)
One would hope that LM(f) is equal to either LM(zf;) or LM(yf,). However, we have LM(f)=z* and
LM(zf;) = LM(yf,) = zy?; in fact, f = S(fi1, f») so it is designed to produce a cancellation of leading terms. This
cannot occur with a Grébner basis.

0Oz Theorem

Let R = K[z1,...,z,] and fix a monomial ordering on R. A tuple G = (g1,...,9s) € R® of nonzero elements is
a Grobner basis if and only if for every nonzero f € (G) there exist ¢1,...,qs € R such that f = Y7 ; ¢ig; and

LM(f) = max{LM(qig:) |3 € {1,...,5},9i9: # 0}

where the maximum is taken with respect to the chosen monomial ordering.

Thus, a Grobner basis of an ideal I can be seen as special set of generators that satisfies the property in the
theorem.

Day 1 problems

Problems 1, 3, 9, 11, 12, and 13 are easier to start with. Everyone should try at least one of the problems that ask
to compute a Grobner basis (11, 12, and 13 are more hands-on; 14 and 15 are a bit more abstract). Problem 4 is
also strongly recommended as the results will be used on Day 2.

Problem 1
Show that there is only one monomial order on K[z].
Problem 2

We say a monomial ordering > is degree compatible if z@ > z® implies deg(z®) > deg(x®). For example, GLex
and GRevLex are degree compatible by definition. Show that there are exactly two degree compatible
monomial orderings on K[z, y].

Show that there is only one monomial ordering on K|z, y] such that z > ' for all i > 2.

For more on the classification of monomial orderings for a small number of variables see Tutorial 10 in Kreuzer,
Robbiano.

Problem 3

Write in increasing order the 20 smallest monomials in Kk[z,y, 2] equipped with Lex. Do the same for GLex and
GRevLex.



Problem 4

Let u = (u1,...,u,) € N® and fix a monomial ordering > on Kk[zy,...,z,]. Given monomials z® and z°, define
z% >, z’ if and only if:

u-a > u-b(where - denotes the dot product of vectors), or
u-a=u-bandz? > z° (in the monomial ordering fixed at the beginning).

We call >, the weight order determined by u and >.

Show that >, is @ monomial ordering.
Assume > is Lex and find u such that >, is GLex.

Consider a positive integer m < nand letu=(1,...,1,0,...,0) withm 1's and n — m 0's. Let > be GRevLex.
Show that >, has the following property: any monomial in z1, ..., z,, iS greater than all monomials in
Klzm+1y- .-, Tn).

Problem 5

Let M be an n x n nonsingular matrix with integer entries and denote M7 its transpose. Given monomials
z%,zb € Klzy,...,z,], define z* >, b if and only if z°™" > z"™" in Lex, where aM7 is the product of the row
vector a with the matrix M7 and similarly for M ™.

Prove that >, is a total order.
Prove that >, is a monomial order if and only if the first nonzero entry of each column of M is positive.
Find a matrix M such that >, is Lex. Do the same for GLex and GRexLex.

Problem 6

Let > be a total order compatible with multiplication on the set of monomials of K[z, ...,z,] (see our definition of
monomial ordering). Recall that a well-ordering is a total order such that every nonempty subset contains a least
element. Show that > has the monomial 1 as its minimum element if and only if it is a well-ordering. [Hint: for the
= implication, use Hilbert's Basis Theorem or Dickson's Lemma.]

Problem 7

Given monomials z¢,zb € K[zy,...,z,], define z* > zb if and only if a = b or the rightmost nonzero entry of the
vector a — b is negative; we call this relation RevLex.

Show that RevLex is a total order compatible with multiplication.
Show that RevLex is not a monomial ordering.

Problem 8
Let R = K[z, ..., z,] and fix a monomial ordering on R.

Show that LM(fg) = LM(f) LM(g) for all nonzero f,g € R.

Show that LM(f + g) < max{LM(f),LM(g)} for all nonzero f,g € R such that f + g # 0. Show that when
LM(f) # LM(g) the equality is achieved.



Problem 9

This problem gives another example where the remainder of division depends on the order of the divisors.
Consider Q[z, y] with the Lex order. Let f = 25 — 1, g1 = —z2 + zy? and g» = z’y — ¢°.

Divide f by the tuple (g1, g2).
Divide f by the tuple (g2, g1).

Problem 10

Let R = K[z, ..., z,] and fix a monomial ordering on R. Consider f,g € R whose leading monomials are relatively
prime, meaning that lem(LM(f), LM(g)) = LM(f) LM(g).

Show that S(f, g) = pg — qf where p = f —LT(f) and ¢ = g — LT(g).
Show that LM(S(f, g)) = max{LM(pg), LM(¢f)}
Deduce that the remainder of S(f, g) upon division by the pair (f, g) is zero.

Problem 11

Consider R = Q[z, y] with the lexicographic ordering. Is the tuple F = (y* — z,zy — 1) a Grobner basis? If not, find
a Grobner basis of the ideal (F).

Problem 12

For a little more practice with the Buchberger algorithm, compute a Grobner basis of the ideal (2z — z3,y — z2) in
Qlz, y, 2] with the GRevLex (or with Lex if you want to see a few more steps). What are some obvious ways to
improve upon the algorithm as outlined above?

Problem 13

Here is an example where the result changes with the characteristic of the field. Find a Grobner basis of
(% + 1,2%y + = — y) in K[z, y] with GRevLex, when k = Q and when k = Z/2.

Problem 14

Let A = (a;;) be an m x n matrix with entries in k. Let
fi=a;121 + a2y + - +a; 52,

be the linear polynomial in K[z1,...,z,] determined by the i-th row of A, and consider the ideal I = (fi,..., fm).
Let B be the reduced row echelon form of A and let g1, ..., g: be the linear polynomials determined by the nonzero
rows of B (so ¢ < n). Prove that {g1,...,g:} is a Grébner basis of I.

Problem 15

A binomial in R = K[z,...,x,] is a polynomial of the form az® — Bz® for some nonzero «,$ € k and some
exponent vectors a,b € N™. A binomial ideal in R is an ideal that has a generating set consisting entirely of
binomials.

Show that the S-polynomial of two binomials is a binomial.
Show that the remainder of a binomial upon division by a tuple of binomials is a binomial.

Deduce that a binomial ideal has a Grébner basis consisting entirely of binomials.



Day 2
Reduced Grobner bases
If you compute Grobner bases by hand and compare with others or with a computer, you may obtain different
results.
() Definition
A Grobner basis G is called reduced if for all g in G:

LC(g) = 1;
no monomial of g is divisible by the leading term of any other element of G.

Reduced Grobner bases are important for the following reason.

0z Theorem

Let R = K|[z1,...,z,] and fix a monomial ordering on R. Every nonzero ideal I in R has a unique reduced
Grobner basis.

If a Grébner basis G of I is known, then it is easy to produce the reduced Grébner basis of I by normalizing
coefficients and eliminating unnecessary terms. This gives us a new method to test ideal equality.

(0= Corollary

Two ideals I, J in R are equal if and only if they have the same reduced Grdbner basis for some (hence any)
monomial ordering.

We also notice that (1) is the reduced Grobner basis of the ideal (1) = K[z, ..., z,] in any monomial ordering. The
vanishing locus in the affine space A} of the ideal (1) is clearly empty. Conversely, by the weak Nullstellensatz, if
k is algebraically closed and I C K[zi,...,z,] is an ideal such that V(I) = &, then I = (1). This leads to the
following criterion which allows us to check when a system of polynomial equations has a solution.

(0= Corollary

Let I be an ideal in k[zy,...,z,] with k algebraically closed. Then V(I) = @ if and only if the reduced
Grobner basis of I in one (hence any) monomial ordering is (1).

It is not possible to work computationally over an algebraically closed field. However, the construction of a
Grobner basis as described in Buchberger's Algorithm can be carried out over a subfield that can be represented
in a computer algebra system.



Solving systems of equations

Grobner bases may help solve systems of polynomial equations. Consider the following example, which describes
the intersection of a sphere, a hyperboloid, and a plane.

22+ +(z-1)2=2
2?4yt =1

r=Yy

In Macaulay?2, we set up aring R = Q|z, y, 2] with the lexicographic order and define the ideal
I=@ 4+ +(z-1)° -2+ - 22— 1L,z —y)

with generators corresponding to the equations of the system.

R=QQ[x,y,z,MonomialOrder=>Lex]
I=ideal(x"2+y"2+(z-1)"2-2, x"2+y"2-z"2-1, X-y)

Observe how M2 expands all operations and arranges monomials according to the chosen ordering. Next, we
compute a Grébner basis using Macaulay?2.

G=gb I
gens G

The gb command runs the Grébner basis computation, then we can use gens to display the result as a one-row
matrix. Notice that the leading terms of the elements in the Grébner basis are arranged in increasing order:
22 < 2y? < z. Because we chose to use Lex and the smallest leading term is a power of the smallest variable z, it
follows that the other terms in the first polynomial must be smaller than z? and, therefore, they cannot involve
other variables. Thus, we get an equivalent system

(2—2=0
2 —2—1=0
z—y=0

where the first equation is univariate. This system can be solved from top to bottom by finding roots of one



equation and substituting into the next. The solutions are the four points

(1 10) ( 1 10> (1,1,1) (-1,-1,1)

\/5 ) ’\/5 I ) \/5 ) ’\/5 b ) ) ) ) ) b .

In this particular example, the default ordering (GRevLex) also leads to a system with a univariate equation, but
that may not always be the case.

The Grobner basis G we obtained for the ideal I is not reduced but only because of the coefficient in 2y?; this
choice allows M2 to avoid denominators over Q. We can check that the paraboloid z = 22 + y? — 1 passes through
the four points by checking it belongs to I or, equivalently, that its remainder modulo G is zero.

f=x"2+y"2-1-z
%G

To express the polynomial f as a linear combination of G we can compute the quotients of division as follows.

f//(gens G)

We can also express f as a linear combination of the original generators of I .
f//(gens I)

Elimination

Grobner bases can also be used to find implicit equations for varieties parametrized by rational functions. In other
words, we can use Grobner bases to eliminate parameters. The stereographic projection from the north pole gives
the rational parametrization of the sphere

2u 2v —1+u? 42

x:1+u2+v2’ T 1t + 02 = 14+ w2402

depending on two parameters u, v.




In Macaulay2, we set up aring R = Qlu, v, z,y, 2] and define the ideal
I=(1+u?+v)z—2u,(1+u?+v2)y—20, (1 +u? +0v?)z+1—u?—2?)

with generators obtained by clearing denominators in the parametrization. We are formally interested in the so-
called elimination ideal I N Qlz,y, 2] in the subring Q[z, y, z]. We could take the Lex order with v > v >z > y > z.
Another option, which is typically more efficient, is to use a so-called elimination order designed to eliminate the
first two variables u, v.

R=QQ[u,Vv,Xx,y,z,MonomialOrder=>Eliminate 2]
I=ideal ( (1+u”2+v"2)*x-2*u,
(1+un2+v"2) *¥y-2*y,
(1+u™2+4v"2)*z+1-u"2-v"2)

Next, we compute a Grébner basis and display its elements.

G=gb I
gens G

The elements of this Grobner basis involving only z,y, z give us implicit equations for the sphere. To extract these
elements, we can use the command selectInSubring.

selectInSubring(1l,gens G)

When we set up the ring with the elimination order, M2 creates two blocks of variables: u,v and z,y, z; the first
argument informs M2 that we want to eliminate the variables in the first block. Another way to obtain an elimination
ideal in M2 is to use the command eliminate.

Notice that our parametrization of the sphere misses the point (0,0,1), so it only covers a subset U of the sphere
which is open in the Zariski topology. The elimination ideal vanishes on the closure of U which is the whole
sphere.

The ideas illustrated in this example can be generalized as follows.

() Definition

Given an ideal I in the polynomial ring k[z1, ..., .|, the m-th elimination ideal I, is the ideal of the subring
K[zm+1, ..., zn] defined by I, = I N K[zmi1, ..., 20

() Definition

A monomial ordering on K[z, ...,z,] is of m-elimination type if every monomial involving one of z1, ...,z is
greater than all monomials in K[zy41, - - ., Zn]-



With the definitions above, we have the following result.

02 Theorem
If I'is an ideal in K[z1,...,z,] and G is a Grobner basis of I with respect to a monomial ordering of m-
elimination type, then GnNK[zmi1,...,2,] IS a Grobner basis of the m-th elimination ideal

I, = INK[@mt1,---,Tn)

Day 2 problems

Problem 16 is about reduced Grobner bases and can be done by hand. The other problems showcase a variety of
applications of Grébner bases in the spirit of the Day 2 notes; use of a computer algebra system like Macaulay?2 is
highly recommended. Problem 21 is strongly recommended for anyone who has not seen it before.

Problem 16

If you found Grébner bases by hand in problems 11 or 12, your results are likely not reduced. Find the reduced
Grobner bases for the ideals in those problems.

Problem 17
Consider the following system of polynomial equations.
(2> +y*+22=9
3z? = y’z
w224+ 2= 2y2
How many rational, real, and complex solutions does it have?

Problem 18

A finite graph is 3-colorable if every vertex can be assigned one of 3 different colors in such a way that vertices
connected by an edge have different colors. If w denotes a primitive cubic root of unity, then we can use the
complex numbers 1,w,w? to represent 3 different colors. If we denote zi,...,z, the vertices of our graph,
assigning a color to each vertex means that each variable z; must be assigned one of the values 1, w,w?. Then,
the equations

3_1=0

(2

must be satisfied for all i € {1,...,n}. If z; and z; are connected by an edge, then z; # z;. Given that z3 = 1 = x‘;’

and z} — 2% = (z; — z;)(=} + z;z; + «3), an equation of the form

$?+$imj+$§ =0
must be satisfied for each edge in the graph. It follows that the graph is 3-colorable if and only if V(I) # & where I

is the ideal of k[z1,...,z,] generated by all the equations above. Now, we can use Grobner bases to solve the
following.

Show that K5, the complete graph on 5 vertices, is not 3-colorable.
Let G be the graph obtained from K5 by removing two non-incident edges. Show that G is 3-colorable.



To work over an extension of Q containing a primitive cubic root of unity, you can use the following Macaulay2
code. Note that 22 + z + 1 is the minimal polynomial of w.

kk=toField( QQ[w] / ideal(w™2+w+1))
R=kk[x 1..x 5]

Problem 19

Shidoku is a smaller relative of Sudoku. You play on the 4 x 4 grid

a|blc|d
el flglh
i | j| k|1
m|n|o|p

and you replace each letter with an integer from 1 to 4 in a way that every row, column, and 2 x 2 corner block
contains each of the number 1, 2, 3, and 4 exactly once. This problem shows how you can represent and solve
Shidoku puzzles using Grébner bases.

Each letter in the grid must satisfy an equation of the form
(w—1)(w—-2)(w—3)(w—4)=0

to ensure that it can only be equal to 1, 2, 3, or 4.

The only way to choose four numbers w, z, y, z from the set {1, 2, 3,4} is for them to add up to 10 and multiply
to 24; in other words, they must satisfy the equations:

w+z+y+2—10=0, wayz — 24 = 0.

Form the ideal I in Qla, ..., p] generated by the conditions above for all variables and all choices of rows,
columns, and 2 x 2 corner blocks. Your ideal should have 40 generators. The ideal I represents all possible
Shidoku boards.

Now, consider a particular board; for example:

We can represent this board by adding new equations such as d = 4 and so on for all other values present on
the board. Let J be the ideal generated by the elements of I and these new equations.

Find a Grobner basis of J to determine if the board above admits a unique solution. If so, use the Grébner
basis to solve the puzzle.

For more information and for more ideas on how to represent Sudoku boards algebraically, consult the article
"Grobner Basis Representations of Sudoku" by Elizabeth Arnold, Stephen Lucas, and Laura Taalman.

Problem 20

Consider the surface S in R? formed by the union of all lines joining the points

(u?, —u3, u), (—u?,u®, 1 —u)



for u € R; this is an example of a ruled surface.

Write a parametrization of S.

Use elimination to find a polynomial f € R[z, y, 2] such that S is contained in the set of points satisfying the
implicit equation f = 0.

Problem 21

Consider the polynomial rings R = k{w, z,y, z] and S = K[s, t]. Consider the ring homomorphism ¢: R — S defined
on the variables as follows:
pw) =5,  ox)=5" oy =st’,  oz)="t"

The kernel of ¢ is the vanishing ideal of the twisted cubic in P3, an object of interest to geometers. The
homomorphism ¢ corresponds to a parametrization of the twisted cubic, so we can use elimination to compute
this kernel. Define the ideal

I= <w—33,x—32t,y—st2,z—t3>
in k[s, t,w,z,y, 2|.

Show that ker ¢ = I N R.
Use Grobner bases to find generators of ker ¢.

Problem 22

The trigonometric parametrization

z = (2 + cos(t)) cos(u)

y = (24 cos(t)) sin(u)

z = sin(¢)
describes a torus in R3. We show this torus lies in an affine variety by eliminating the parameters ¢+ and u to
produce a polynomial equation. The trigonometric functions prevent us from using elimination directly, so set

a = cos(t), b = sin(t), ¢ = cos(u), d = sin(u)

to replace the parametrization above with an algebraic one. However, these new variables are not independent as
they must satisfy a2 +5b%2=1 and c2+d? =1. Now, form an ideal I in Qla,b,c,d,z,y,z] generated by the
parametrization and the relations among the new variables. Finally, use elimination to find the equation for the
torus.

Problem 23

You may remember when a quadratic equation has a double root, but what about a cubic equation? Consider the
polynomial p(z) = az? + bz? + cx + d for some a, b, c,d € k, where k is a field of characteristic not equal to 2 or 3,
and a # 0. Recall that z is a double root of p(z) if and only if (z — z()? divides p(z).

Show that z is a double root of p(z) if and only if p(z¢) = 0 and Z—I;(zo) =0.

Consider the ideal I = (p, Z—£> of k[z, a, b, c]. Find I N K]a,b,c,d] and use it to determine when p has a double
root in terms of a, b, ¢, d.

Similarly, find conditions on a, b, ¢, d guaranteeing p(z) has a triple root.



Problem 24

Consider the polynomial
fla,y) =y — (2* + az + ),

where a,b € k and k is a field of characteristic not equal to 2 or 3. The points (z,y) € k? that satisfy f(z,y) =0
define a plane cubic curve. A point P = (zg, yo) on this curve is called singular if the tangent vector at P

of| Of

Oz [p’ Oy |p
is zero; we say the curve is smooth if it has no singular points. To determine when the curve has singular points
proceed as follows. Consider the ideal I = <f,%,g—£> of Kk[z,y,a,b], then eliminate z and y to find relations

between a, b. The plane cubic will be smooth, also known as an elliptic curve, when those relations are nonzero.
Problem 25

Fix a € C. The minimal polynomial of a over Q is the monic polynomial p with rational coefficients of the smallest
degree such that p(a) =0, where monic means it has leading coefficient is 1. For example, the minimal
polynomials of a = v/2, b= /5, and i = v/—1 are, in order, a2 — 2, b3 — 5, and i2 + 1. This problem shows how to
use elimination to find the minimal polynomial of a complex number living in a particular field extension of Q. For
example, consider

—i V25— .
T = P NG EQ(\&,\/E,z).

By clearing the denominator, we obtain the algebraic relation axz — b* +i = 0. We take the ideal of Qla,b, i,z
generated by this relation and the minimal polynomials of a, b, and i:

I=(azx—b*+i,a®—2,b%—5i2+1).

Next, we use an elimination order to compute I NQ[z]. Since this elimination ideal lives in Q[z], it can be
generated by a single monic polynomial, which is the minimal polynomial of z. Find this minimal polynomial.

Problem 26
A polynomial f € K[zy,...,z,] is called symmetric if
f@i, .y 20) = f(@oqa)s - To(n))
for every permutation o of {1,...,n}. We can use elimination orderings to identify symmetric polynomials as
follows. For 1 < k < n, we define the elementary symmetric polynomial of degree k as

ek: E xil...xik;
1<ip < - <ip<n

in other words, ey, is the sum of all squarefree monomials of degree k. In the ring R = K[z1,...,Zn, Y1, - .-, yn] With
a monomial ordering of n-elimination type, let G be a Grébner basis of the ideal I = (e; — y1,...,en — yn). Given
f e Klzi,...,z,]) C R, let g be the remainder upon division of f by G. Then:

f is symmetric if and only if g € K[y1, ..., ynl;
if f is symmetric, then f = g(eq,...,e,) and this is the unique expression of f as a polynomial in ey, ..., e,.



Now, for ¢ > 0, define the power sum symmetric polynomial

and the complete homogeneous symmetric polynomial

h; = g CRRRRY A

ai+---+an=i
For n =4, use the ideas above to verify that pi,...,ps and hi,...,hs are symmetric, and express them as
polynomials in ey, ..., e4.
Problem 27

Let I and J be ideals in k[z1, ..., zx)].

Show that (¢t + (1 —t)J) NK[z1,...,z,] = INJ. Here, ¢I is the ideal of K[¢t, z1, ..., z,] generated by
{tf1,...,tfr} where {f1,..., fr} is a set of generators of I; the ideal (1 — t)J is constructed similarly.

Use elimination to compute I N J where I = (z%y — z,zy + 1) and I = (z — y, 22 — ) are ideals of K[z, y, 2].

Problem 28

Let I and J be ideals in R = K[z1,...,z,]. The ideal quotient I : J, also known as a colon ideal, is defined as
I:J={f€e€R|VgeJ,fge I}

Ideals quotients are useful when studying differences of algebraic sets.

Show that I : J is an ideal of R.
Show that if J = (g4, ..., gs), then

I:Jzﬁ]:(gQ.

1=

Show that if g € R is nonzero, then

1
g

I:(g) (IN{(g))-

Combine the previous observations to compute I : J for the ideals I = (z(z + y)?,y) and J = (z%,z + y) in
Q[z, y]. You can use Problem 27 to compute intersections or you can just use the Macaulay2 method
intersect.

Day 3
Leading terms

Recall that having fixed a monomial ordering on the polynomial ring R = K[z4,...,z,], the largest monomial
appearing with a nonzero coefficient in a polynomial f is called its leading monomial; we denote it LM(f). The
coefficient of the leading monomial is called the leading coefficient of f; we denote it LC(f). The product of the two
gives the leading term of f; we denote it LT(f), so we have LT(f) = LC(f) - LM(f).



() Definition

Let I in R =K[z1,...,z,] be a nonzero ideal and fix a monomial ordering on R. Denote LT(I) the set of
leading terms of nonzero elements of I. We call (LT(I)) the ideal of leading terms of I.

The ideal of leading terms is, by construction, a monomial ideal of R, i.e., an ideal that has a generating set
consisting entirely of monomials. Although LT(I) is an infinite set, (LT(I)) admits a finite generating set
(consisting of monomials) by Hilbert's Basis Theorem. One can also show directly that a monomial ideal admits a
finite generating set; this result is known as Dickson's Lemma.

One would hope that if I = (f1,..., fr), then (LT(I)) = (LT(f1),...,LT(f)); however, this is false in general. For
example, consider the polynomials f; = y*> — z and f> = zy — 1 in GLex. On Day 1, we showed that

—z? +y = S(f1, f2) € (f1, f2).

However, z% ¢ (y?, zy).

0% Theorem

Let Iin R = K]z1,...,z,] be a nonzero ideal and fix a monomial ordering on R. A tuple G = (g1,...,9s) € R®
is a Grobner basis of I if and only if (LT(I)) = (LT(g1),...,LT(gs)).

Since it is an equivalent characterization, this is often taken as the definition of a Grébner basis. As it turns out,
this characterization has many useful applications.

Quotient representations

We are finally able to solve our other motivational problems, namely how to represent and compare elements in
the quotients of a polynomial ring.

Let R = K[z1,...,z,] and fix @ monomial ordering on R. Let I in R be an ideal and let G = (g1,...,9s) be a
Grobner basis of I. Given any polynomial f € R, we can use the division algorithm to write f= Y7, qgi +,
where r is a k-linear combination of monomials not divisible by any of LM(g1),...,LM(gs). Since G is a Grobner
basis of I, we have:

I={g1,...,9)SOf+I=r+1I;
r is uniquely determined (it depends only on f, I, and the monomial ordering);
no term of r is divisible by any monomial in (LT(I)).

We can combine these observations into the following result.

(0< Theorem (Macaulay's Basis Theorem)

Let I in R = K]zy,...,z,] be a nonzero ideal and fix a monomial ordering on R. The monomials of R not
belonging to (LT(I)) form a basis of R/I as a k-vector space. In particular, if G = (g1,...,gs) is a Grobner
basis of I, then the monomials of R not divisible by any of LM(g1),...,LM(gs) form a basis of R/I as a k-
vector space.



The monomials of R not contained in (LT(I)) are sometimes called the standard monomials modulo I.

Hilbert functions and polynomials

Recall that a polynomial f € R = K|z, ..., z,] is called homogeneous of degree d if

f(tzy,... tx,) = t4f(zy,...,z,)

for all t € k \ {0} or, equivalently, if all terms of f have degree d. For d € N, denote R, the k-vector subspace of R
spanned by all homogeneous polynomials of degree d, which we call the graded component of R of degree d. The
ring R admits a direct sum decomposition

R=DRa
deN
as a k-vector space. Moreover, multiplication respects this decomposition in the sense that for all f € R4, 9 € R,
we have fge€ Ry,.. An ideal I of R is called homogeneous if it has a generating set consisting entirely of
homogeneous polynomials. For example, monomial ideals are homogeneous. For d € N, let I; be the k-vector
subspace of I spanned by all homogeneous polynomials of degree d in I, which we call the graded component of
I of degree d. A homogeneous ideal I admits a direct sum decomposition

I:@Id

as a k-vector space. Moreover, multiplication is compatible with this decomposition in the sense that for all
fel;ge R, wehave fg € I, .. When I is a homogeneous ideal, the quotient ring R/I inherits a grading

R/T=EP(R/1)4

deN

by letting (R/I)4 be the span of all cosets f+ I with f € R;. As a k-vector space, we have (R/I); = Ry/1,.
Quotients of a polynomial ring by a homogeneous ideal arise naturally as "coordinate rings" of projective varieties,
so we will focus on them for the rest of this section. An analogous discussion can be had in the nonhomogeneous
(i.e., affine) case.

() Definition

Let I be a homogeneous ideal of the polynomial ring R = Kk[z1,...,z,]. The Hilbert function of R/I is the
function Hy/;:N — N defined by Hp/;(d) = dimy(R/I)4, i.e., the dimension of the graded component of
degree d of R/I as a k-vector space.

As a simple example, observe that when I = {0} we have R/I =~ R and

1
Hy(d) = dimy Ry = (n g + d).

Fixing a monomial ordering on R, we have a basis of (R/I)4 consisting of all monomials of degree d not contained
in (LT(I)). This shows the dimension of (R/I), is always finite and gives us a practical way to compute it.

For example, consider the homogeneous ideal
I=w +2>+ 92+ 22wz +y+2)

in R = Q[w, z,y, z] with the GRevLex ordering. We can use the following Macaulay2 code to produce the ideal of
leading terms of I.



R=QQ[w,x,y,z]
I=ideal (W"2+X"2+y"2+272,w* (Xx+y+z))
leadTerm I

As a result, we get that (LT(I)) = (wz,w?, z3). From here, we see that
Hp(0) =1, Hp(1) =4, Hpr(2) =8

because all monomials of degree 0 and 1 survive in the quotient, but 2 of the 10 monomials of degree 2 are
congruent to zero. For larger d, the computation is a little more involved. For example, when d = 3 the monomials
not in (wz, w?, z3) are

2 2 2 2 .2 2 3 .2 2 3
wy ,wyz, wz , Y ,TY2, T2 ,T Y, T 2,Y ,Y 2,Yz ,2

so that Hp,7(3) = 12. In fact, for d > 3 the monomials not in (wz, w?, z*) are:

wy® L wy? %z, .., wyz? 2, wz?t (d monomials),
ey ey 2z, .. zyz? 2, 2297 (d monomials),
x2y? 2 22yt 32, .. 2?y2z973, 222972 (d — 1 monomials),

and y?, y41z,...,yz%1, 2% (d + 1 monomials).

Therefore, for d > 3 we have
HR/I(d) =d+d+(d—1)+(d+1) =4d.

We can also use Macaulay2 to compute individual values of the Hilbert function and to get bases for the graded
components.

Q=R/I
for i to 10 do print hilbertFunction(i,Q)
basis(2,Q)

The behavior observed in this example generalizes.

0z Theorem

Let I be a homogeneous ideal in R = K[z1,...,z,|. There is a polynomial Pg/;(t) € Q[t] such that for all d
sufficiently large we have Hpy/;(d) = Pg/;(d).

The polynomial Pg/; is called the Hilbert polynomial of R/I and it carries useful information. If the leading term of
Pg/ris ct?, then

dim(R/I) =1+ d, where dim(R/I) denotes the Krull dimension of R/I;
deg(R/I) = cd!, where deg(R/I) denotes the degree or multiplicity of R/1I.

The dimension and the degree of R/I allow us to measure how big and complicated the vanishing locus of I is in
projective space. In the example above, we have dim(R/I) = 2 so the vanishing locus of I is a curve (the Krull
dimension of the coordinate ring is one more than the dimension of the projective variety); also, deg(R/I) = 4, so
this is a curve of degree 4. To compute the Hilbert polynomial in the format above using Macaulay2 you can use
the following code.



hilbertPolynomial(Q,Projective=>false)

The connection between the algebra and the geometry goes even deeper. Suppose I is a homogeneous ideal and
G =(¢91,--.,9s) is a Grobner basis of I. For 1 < ¢ < s, define polynomials

hi = gi — LT(g:)
obtained by removing the leading term from each g;, and let
Giy = LT(gi) + ths
where ¢ is a parameter. Altogether, the polynomials G;; define a family of ideals
I = (Gi4y...,Gsy)

depending on the parameter ¢. Note that I; = I and I, = (LT(I)). Our previous discussion allows us to observe
that dimy(R/I)g = dimy(R/I), for all d €N, so that R/I; and R/I, have the same Hilbert function and,
therefore, they have the same Hilbert polynomial, dimension and degree. In fact, the quotients R/I; have the
same Hilbert function for all values of the parameter ¢. For ¢ # 0, the vanishing locus of I, may look like some
deformation of the vanishing locus of I. However, for ¢t =0, I = I, is @ monomial ideal and its vanishing locus
reduces to a union of linear subspaces; this is typically different from the vanishing locus of I but it may be easier
to understand. The process of deforming the vanishing locus of I to that of I, is sometimes referred to as a
Grobner degeneration.

Syzygies

Finally, let us return to the division algorithm. We observed that when dividing by the terms of a Grobner basis the
remainder is unique, in particular it does not depend on the order of the divisors. However, quotients are generally
not uniquely determined.

Consider the polynomials f, =y? —z,fo =2y —1,f; = —z2 +y. As we observed on Day 1, (fi, fs f3) is a
Grébner basis. We have
wy’ =zfi—fi+y=(x—-1)fi+tzfr+@y—-1)f;+y,

where the first equality was obtained using the division algorithm and y is the remainder. Thus, we have at least
two different sets of coefficients (z,0,—1) and (z — 1,z,y — 1) for fy, fs, f3 that could act as "quotients" upon
division of zy? by (f1, fa, f3)-

Let R =K[zy,...,z,] and fix a monomial ordering on R. Consider a tuple F = (fy,...,fs) € R° of nonzero
elements. Given f,r € R, suppose there are two different tuples (g1, ..., q;), (G, ---,4s) € R® such that

f= Z‘L‘fi +r= Zqz'fi +r.
im1 i=1

Then, we have

S

Z(Qi —qi)fi =0.

i=1

We can study the tuples (h1,...,hs) € R® such that >>7_, h;f; = 0 as a way to measure the failure of uniqueness
of the quotients upon division by F'.



() Definition

Let R=K[z,...,z,] and consider a tuple F = (fi,...,fs) € R° of nonzero elements. A tuple
H = (hi,...,hs) € R*° such that

8

Zhifi:o

i=1

is called a syzygy of F. We denote Syz(F') the set of all syzygies of F.

The universally beloved word syzygy comes from the greek word for yoke. It is used in astronomy to describe an
alignment of celestial objects. It is also the name of a few music bands and the title of several short films, TV show
and podcast episodes, including an episode of the 90's cult TV show The X-Files.

The set Syz(F) is closed under sums and multiplication by elements of R; in other words, Syz(F) is a submodule
of R®. If we let

e; =(0,...,0, ,0,...,0) € R*,

1
-

i-th position

then we can write

(hl, ceey hs) = ES: hiei.
i=1

For all choices of indices 1 < i < j < s, we have
fiei — fiej € Syz(F).

Are there other syzygies and, if so, can we find them all? Since R is Noetherian and R? is a finitely generated R-
module, the submodule Syz(F) is also finitely generated. Thus, to describe all syzygies it is enough to find a finite
generating set.

Going back to our example, we know that f; is the S-polynomial of f; and f5:
2 2

S(f1, f2) = yi@/ )= ey 1) =

where zy? is the least common multiple of the leading monomials of f; and f,. We know that the S-polynomial is
designed to cancel the leading terms of its arguments, a fact which we can write as follows.
2 $y2

S(LT(f1), LT(f2)) = “;izzﬁ =)~ y(ey) =0

If we let LT(F) = (LT(f1),LT(f2),LT(f3)), the above equality can be reintepreted using the language of syzygies:
(:E, Y 0) € SyZ(LT(F))

As observed in our example, S-polynomials give rise to syzygies of leading terms. In fact, every syzygy among
leading terms arises as an R-linear combination of these.



02 Theorem

Let R = K|z1,...,z,] and consider a tuple F = (f1,...,fs) € R° of nonzero elements. Fix a monomial
ordering on R and write LT(F) for the tuple (LT(f1),...,LT(fs)) € R’. The elements

_ lom(LM(f) LM(f)  lem(LM(£), LM(£))
7 T Iy

for 1 < i < j < s generate the submodule Syz(LT(F)) of R®.

In our ongoing example, we have:
o2 = (z,—y,0), o13 = (22,0,7°), o2 = (0,z,y).

Notice that o135 = zo12 + yoes, SO 013 IS a redundant generator. We can also see that o3 is related to one of the
"obvious" syzygies of F

T3 = —f3e1 + fres = (2° —9,0,9> — ) = 013 — (,0, ).
The tuple (y, 0, z) happens to contain the quotients of division of S(f1, f3) upon division by F:
S(fi,f3)=—2*+y* =y - f1+0-fo+z- fs

In this case, we say that o5 "lifts" to a syzygy of F. Replicating these steps with o1, and o3, we get the quotient
tuples

S(fl,f2):_x2+y:0'f1+0'f2+1'f3M(05051)7
S(forfs) =y —az=1-f1+0-fo+0-f3 « (1,0,0),

S0 015 and oy lift to the following syzygies of F':

Ti2 = (.Z‘, Y, 0) - (Oa(); 1) = (93, Y, _1)a
T23 = (O’x’y) - (170’0) = (_17‘T7y)-

Here is the crucial observation: in order to write every S-polynomial S(f;, f;) as a linear combination of F we want
the remainder of S(f;, f;) upon division by F to be zero; in other words, we want F to be a Grobner basis!

0% Theorem

Let R = Kk[z1,...,z,] and fix a monomial ordering on R. A tuple G = (g1, ..,9s) € R* of nonzero elements is
a Grobner basis if and only if every homogeneous element of Syz(LT(G)) lifts to an element of Syz(G). In
this case, if 71, . .., 0., are homogeneous elements generating Syz(LT(G)), then their lifts 71, . .., 7., generate
Syz(G).

We can formalize the process for finding generators of Syz(G) in the following algorithm.



2 Lifting syzygies
To find a generating set of Syz(G) where G = (g1, ..., gs) is a Grobner basis, proceed as follows.
For all indices 1 < ¢ < j < s, compute

_ lm(LM(g) LM(g))  lem(LM(g:),LM(g)))
T e ITe)

For all indices 1 < ¢ < j < s, find (¢, .. .,¢5) € R® such that
S
S(gi,gj) = Zcijkgk-
k=1
For all indices 1 < ¢ < j < s, compute

S
Tij = Oij — g Cijk€k-
k=1

Return the set {r;; |1 < ¢ < j < s}.

Macaulay?2 can find syzygies using the command syz .

R=QQ[x,y,MonomialOrder=>GLex]
I=ideal(y"2-x,x*y-1)

--syzygies of the leading terms
LTG=1leadTerm I

syz LTG

--syzygies of the Grdbner basis
G=gens gb I

syz G

Day 3 problems
Problem 29

Consider the ideal in Problem 12.

Find the initial ideal with respect to GRevLex.
Find the initial ideal with respect to Lex.

Problem 30
Consider the ideal of R = Q[z, y, z] generated by the equations in Problem 17. Fix a monomial ordering on R.

Find a basis of R/I as a k-vector space and show it is finite dimensional.

If you previously solved Problem 17, how does the dimension of R/I relate to the total number of solutions of
the system?



Problem 31

Let R = Cl[z,y, 2] and

I = (y*z — y2?, zyz, 222 — 2, 2y — z9?).

Verify that the generators of I form a Grobner basis with respect to GRevLex.
Use the initial ideal of I to find the Hilbert polynomial of R/I.
Find the dimension and degree of R/I, then use them to give a geometric description of V(I) in P2.

Problem 32
Let R = k[w, z, v, 2] and let J be the defining ideal of the twisted cubic in P* that you constructed in Problem 21.

Find a Grobner basis G of J with respect to GRevLex.

Use G to find the initial ideal of J and, from there, the Hilbert polynomial of R/J.

Find the dimension of R/I to confirm that V(I) is a curve (remember the dimension of the ring is the
dimension of the projective variety plus one).

Find the degree of R/I to confirm that V(I) is a cubic.

Show that Syz(G) is generated by two linear syzygies.

Problem 33

This problem is about studying a non-homogeneous ideal by making it homogeneous. We start with a brief review
of projective space.

The projective space P" over the field k is made up of points [zq : z; : - - - : @,,] with at least one z; # 0, and these
points are defined up to nonzero scalars, meaning that for every 0 # X € k we have

[Zo:zy i x| =[Amg: Amy i -+ Az
A homogeneous polynomial f of degree d has the property that
f(Azo, Az1, ..., Azy) = )\df(acg,ml, ey @p)

so the vanishing of a homogeneous polynomial at a point of P" is well-defined. The affine space A™ over k
embeds embeds in P" by sending (zi,...,2,) t0 [1:21:---:2y). Now, if X C A™ is a variety, the smallest
subvariety of P that contains the image of X under this embedding is called the projective closure of X.

If X C A" is the vanishing locus of an ideal I = (fi,..., fr) C K[z1,...,z,], the first thing you might try to do is
multiply the terms in the generators f; by powers of the variable z, so that the resulting polynomials f!* are
homogeneous (see the example below). The following exercises show that this approach can fail even in simple
situations.

Let I = (f1, f2) C C[z,y] where f; = 4> — z and f» = zy — 1. Show that the vanishing locus of I in A? contains
exactly three points. We can denote these points (a;, b;) for ¢ € {1, 2, 3}.

When we homogenize f; and f, with respect to a new variable z, we get flh =92 — zzand f2h = zy — 22. Show
that the vanishing locus of the homogeneous ideal (£}, f#) C Clz,y, 2] in P? contains [a; : b; : 1] for i € {1,2,3},
and one additional point [ay : by : 0].

Here is how we remedy the situation.



Compute a Grobner basis G of I with respect to a degree compatible monomial ordering such as GLex or
GRevLex.

If G = (g1,--.,95), then we form the ideal I" = (g%, ..., g") of C[z,y, 2] generated by the homogenizations of
the elements in G with respect to z.

Show that the vanishing locus of I" in P2 contains only the points [a; : b; : 1] for i € {1,2,3}.

The general theory says that if G = (g,...,9,) is a Grobner basis of an ideal I C k[z,...,z,] with respect to a
degree compatible monomial ordering, then the projective closure of V(I) in P™ is the vanishing locus of
I" = (g’f,...,gg) C K[zg, 21, .-, 2y

Problem 34

This is a continuation of Problem 19 on Shidoku puzzles. Let I C Qa, ..., p] be the ideal representing all possible
Shidoku boards.

Find I* using the method described in Problem 31. Macaulay2 has the homogenize method that you can use
to homogenize a polynomial or an ideal with respect to a variable (you will need to work in a larger polynomial
ring that contains one extra variable).

Show that R/I* has dimension one. This tells you that the projective variety defined by I* has dimension zero
or, equivalently, that it is a finite set of points (whose coordinates are the entries of all the possible Shidoku
boards).

Find the degree of R/I". This will tell you the number of points in the vanishing locus of I*, which is also the
total number of possible Shidoku boards.

Use similar methods to find the number of possible solutions for the following board.

4

Problem 35
Let R = Q[w, z,y, z]. The tuple

G = (2® + yz,wz + yz, w® + yz, wyz — xyz) € R*
is a Grobner basis with respect to GRevLex.

Construct all the generators o;; of Syz(LT(G)).
Remove all non-minimal o;; (this will reduce computations in the next steps).

Find lifts 7;; of the minimal o;; to construct a generating set of Syz(G).
Problem 36
This problem tries to clarify what it means to "lift" a syzygy.

Let R = Kk[z1,...,z,] and consider a tuple G = (g1,...,9s) € R® of nonzero elements. Fix a monomial ordering on
R and write LT(G) for the tuple (LT(g1),...,LT(gs)) € R®. A tuple of terms (¢1,...,ts) € R® is homogeneous of
degree a € N” relative to G if LM(g;) LM(¢;) = 2 for all ¢ € {1, ..., s} such that ¢; # 0.



Show that for 1 < ¢ < j < s the element

lem(LM(g;), LM(g;)) o lem(LM(g;), LM(g;))
LT(g:) ' LT(g;)

Uij =

s
ejER

is homogeneous of degree a relative to G where z® = lem(LM(g;), LM(g;)).
Every element of R®* decomposes as a sum of homogeneous elements of possibly different degrees relative to G.

For example, consider the tuple
G=—zxy—1,—2°+vy)
of polynomials in Q[z, y] with GLex. Decompose
H = (2%y —zy’,2° +°, 2y’ — 2°y)
into a sum of homogeneous elements relative to G.

Given H < R*, we write H =) . H, with H, homogeneous of degree a relative to G. We define the leading
form of H relative to G as LF;(H) = H; where

¢ = max{z® | H, # 0}
taken with respect to the monomial ordering.

Find LF¢(H) for the triples G and H above.
In general, show that if H € Syz(G), then LFg(H) € Syz(LT(QG)).

Thus, the operator LF defines a function from R* to R* that sends the submodule Syz(G) to Syz(LT(G)). Finally,
we say that H € R¢ is a lifting of H € R* if LFo(H) = H.

For the triple G above, find a lifting of

H = (a'y’, 2%y, 2%y").

Not every element H € R*® has a liting. However, if G is a Grébner basis and H is homogeneous, then H has a
lifting.



4.1

4.2

Characteristic

This course introduced key positive characteristic methods, including a suite of techniques used to
study problems in commutative algebra and algebraic geometry that makes use of the Frobenius
morphism. This course was taught by Jack Jeffries (University of Nebraska).

Video Links

You can watch the original lectures using the following links:
e Lecture 1 Video
e Lecture 2 Video
e Lecture 3 Video

Lecture Notes and Tutorials

We have included copies of Jack’s lecture notes and his tutorials, which were provided by Jack.
The tutorials are also found in this document.


https://youtu.be/wQFc1Ci7I_c 
 https://youtu.be/guXVNuFOUms
https://youtu.be/j4nIh-O2wjg 

THE FROBENIUS MAP: THE POWER OF PRIME CHARACTERISTIC

JACK JEFFRIES

These are lecture notes and exercises for a short graduate lecture series on positive char-
acteristic methods for the SLMath/SMS Summer School An Introduction to Recent Trends in
Commutative Algebra in June 2025. My goal in this series is to give an appreciation for the
power of techniques involving the Frobenius map to prove statements that have nothing to do
with Frobenius. It is not my goal to thoroughly develop the tools needed for research in this
area. The audience has a varied background, so I am not assuming any background beyond a
first year graduate sequence on algebra. There is not enough time in this course to cover back-
ground material from commutative algebra and homological algebra in addition to the specific
content of these lectures, so instead I will often give statements that are specialized to more
concrete situations rather than giving the most general statements, and sometimes also offer a
“more generally version” for those have have additional background. For time reasons, I will
often sketch proofs, occasionally leaving some details to the exercises.

In the first lecture, I will discuss the basic perspectives and terminology of the Frobenius map.
The first problem set is intended to solidify these notions, though there are also a few problems
that build towards the later lectures. The second lecture will briefly introduce tight closure and
an application. The third lecture will introduce a couple of notions of F-singularities and outline
a couple more applications. The second problem set will explore the notions from the last two
lectures, and fill in some details of the proofs.

Throughout these notes, all rings are commutative with 1 # 0, and p will denote a positive
prime integer.

1. Basics with the Frobenius map

Recall that a ring R has characteristic p if

p=1+---+1
—— e’
p times

is zero in R. This is equivalent to R containing a field of characteristic p as a subring: if R has
characteristic p, the image of the homomorphism Z — R is isomorphic to IF,.

The Frobenius map. Let us start with an observation about binomial coefficients. For any
integer i with 0 <7 < p, the binomial coefficient

py_ P!
i (p—i)-i!

has a factor of p in the numerator, but not the denominator. Since we also know this coefficient

is an integer, e.g., for combinatorial reasons, the Fundamental Theorem of Arithmetic says that
1
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it is a multiple of p. Thus, when R has characteristic p, for any r,s € R, one has

(r+s)f = rp+(f)rp_ls+(g)rp_252+---+( P 1)rsp_1 +sP

=rP+sP, and
(rs)P =rPsP,

and 17 =1, so the map
F:R— R, F(r)=1P
is a ring homomorphism from R to itself, called the Frobenius map on R. We may denote this
as Fg to indicate the ring when useful.
One can apply the Frobenius map multiple times:

F®: R— R, Fe(r)=r""

which we may call the e-th Frobenius or e-th Frobenius iterate. Note that no power map is a
ring homomorphism in characteristic zero.

Example 11. For R = [F, the Frobenius map is the identity: this is Fermat’s Little Theorem.
Example 1.2. For R = [, [x], the Frobenius map is given by
F(a,x"+---+ayx+ag) =a,xP" +---+a;xf +a
and the iterates by
Féaux" + -+ ayx+ag) = ayxP " + -+ a; xP* +ay.

Every ring of characteristic p has a Frobenius map, and the Frobenius map is compatible with
every ring homomorphism between rings of characteristic p:

R r——————q(r)
S [
R——=S§ P —— @(rP) = @(r)P.

This universality and naturality is a clear sign of the importance of the Frobenius map.

Injectivity and surjectivity. Let us start with a simple relationship between the Frobenius map
and something that has nothing to do with it.

Lemma 1.3. Let R be a ring of characteristic p. The Frobenius map on R is injective if and only if
R is reduced (meaning that R has no nonzero nilpotents).

Proof- We will prove the contrapositive of each direction. (<) : If Fy is not injective, then there
is some r # 0 with r? = 0; such an element is a nonzero nilpotent of R.

(=): If R is not reduced, then there is some r # 0 with " = 0 for some n > 2. Take n
maximal such that r" # 0; then np > n, so F(r") = rP" = 0, and r" is a nonzero element of the
kernel of Fp. 0

It is rarer for the Frobenius map to be surjective. The image of the Frobenius map is evidently
the p-th powers of elements in R. A ring of positive characteristic is perfect if its Frobenius
map is bijective. You are likely familiar with this consideration for fields. Perfect fields include

all finite fields, like F, and IFP7, and all algebraically closed fields, like IF_p and IFp(t). However,
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a field like IF,(#) is not perfect, as t is not a p-th power. However IF,[x] is evidently not perfect.
One can show that when R is Noetherian then Fy is surjective if and only if R is a finite product
of perfect fields.

Alternative perspectives. One of the most confusing aspects of the Frobenius map is the fact
that the source and target are the same, though the map is typically not an isomorphism. It is
often useful to separate the source and target of the Frobenius to clarify the situation. One can
think of this as analogous to the case of linear algebra, where some aspects of an endomorphism
of a vector space are easier to understand with separate bases on the source and target.

Our first alternative perspective on Frobenius is based on renaming the target copy of R. We
will decorate every element in the target of the e-th Frobenius F¢ with the decoration F;. That
is, F{R is just an collection of doppelgingers of elements R:

FSR={Fir|reR}
Fér+Ffs=Ff(r+s) and F¢rFfs=F¢(rs),
so the map
R — F°R r+— Fér

is an isomorphism. After rewriting “target R” as F{R via the isomorphism above, the e-th
Frobenius map takes the form

R — F°R r—> FE(rP°).

One should think of this as follows: the e-th Frobenius map sends r —> rP°, and the F¢ symbol
simply says which copy of R the element rP* lives in. Put another way, we have the commutative
diagram

R—E.R r—s P
R——F/R Iﬁ—> Fe(rP°)

where the bottom row is the Frobenius from R — F{R and the right map is the isomorphism
“adding the decoration F{”.
When R is a domain, there is another useful way to think of F{R. In this case, R has a field of

fractions K, which admits an algebraic closure K. Every element of R has a unique p°-th root
r/P" in K, as K is a perfect field. Define

RYP* .= (#1/P° K | r € R).

One can verify that RYP  is a subring of K, and the map

R —s RVP¢ r— /P

is a ring isomorphism. We can think of the exponent /r° as a decoration that yields an
isomorphic copy of R. After rewriting “target R” as RYP® via this isomorphism, the Frobenius
map takes the form

R —s RVP’ r»—>(rpe)1/pe =r.
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That is, after the identification above, the Frobenius map identifies with the inclusion of
R C RYP", Put another way, we have the commutative diagram

Fe
R——R F— P’

R

R —— RV¥* r—r = (rP)VP",

where the bottom row is the inclusion map and the right map is the isomorphism R = R/P*
of taking p°-th roots. This notion of roots equally well makes sense when R is reduced: in
this case, R embeds into product of fields, which embeds into a product of algebraically closed
fields, where every element again has a unique p°-th root.

A third perspective on the Frobenius on a reduced ring is by identifying the source of Frobe-
nius with RP*, the subring consisting of p°-th powers of elements of R. In this case, the Frobenius
map corresponds to the inclusion map RP° C R.

Typical constructions. We now discuss some typical constructions for ring maps applied to
special case of the Frobenius. For a general ring homomorphism ¢ : A — B, one has the notion
of extension of an ideal I C A given as the ideal of B given by (¢(a) | a € I). This leads to the
notion of Frobenius powers. Given an ideal I C R, we define the Frobenius powers of I as

Pl =" |ael)=(Fa) | acl).

If I = (ay,...,a;), then IP°] = (allj ,...,af ), as is the case in general for extension of ideals.

Observe that I[P C IP°, but these are typically different when I is not principal.

Another important construction comes from restriction of scalars. For a general ring homo-
morphism ¢ : A — B, one can view B as an A-module by restriction of scalars: B becomes an
A-module by the rule a-b = @(a)b. One can view R as an R-module by restriction of scalars
through F¢, so R acts on R by the rule

e
r-s=rPs.

It is especially helpful to use the alternative notations for the Frobenius map in this setting.
Consider the Frobenius map in the form

R—>F’R r F¢(rP).
The R-module action on F¢R is then
r-F¢s=F¢(rP's).
For R reduced, we may also consider the Frobenius map in the form
RCRYF,
The R-module action on R/P* is then the straightforward action
re VP = psl/P = (4P°5) VP,

We will return to discuss this structure in great detail for a polynomial ring soon.
One can also apply the restriction of scalars to an arbitrary R-module. For a general ring
homomorphism ¢ : A — B, and B-module N, one can view N as an A-module by restriction
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of scalars: N becomes an A-module by the rule a-n = @(a)n. To apply this with the Frobenius
map, we let M be an R-module. Let us think of the Frobenius map in the form

R—>FfR r+ F(rP),
and think of M as a module over the target; we will rewrite M as
FSM ={Fim | me M}
with F¢R-action
Fér-Fim = F(rm).
The action of R on F¢!M is then

r-Fém = F(rP \Fem = F¢(rP m).

Finally, we discuss extension of scalars. For a general ring homomorphism ¢ : A — B, and
A-module M, one can create a new B-module by extension of scalars. The construction is most
naturally stated in terms of tensor products, but we give a slightly more concrete construction.
One can write M in terms of generators and relations: M has generating set {m;}; with relations
{3 aijml-}j, meaning ) ; ajjm; =0in M for all j, and that these generate the tuples of relations
on these generators. The module ¢*M is then the B-module with generating set {m;}; with
relations {)_; ¢(a;;)m;};. To apply this with the Frobenius map, we let M be an R-module. If M
is as above, the Frobenius restriction of scalars module is the R-module F® (M) with generating

. . p°
set {m;}; with relations {Ziaij mi};.
Polynomial rings and Kunz’ Theorem. We will now analyze the R-module structure of F{R
in detail in an important case.

Theorem 1.4. Let K be a perfect field of characteristic p, and S = K[xy,...,x,]| be a polynomial
ring in n variables over K. Then F:S is a free S -module with basis

B = {FS(xl - xi) | 0 < a; < pf).

Proof. We need to show that every element of F¢S can be written as an S-linear combination of
the elements above. ) )
Every element of F{S is a sum of elements of the form F{(yx,'---x,") with y € K and
bl,...,bn > 0. Write bi = peCi +a; with 0 < a; < pe. Then
e e
Pf()/xlfl ._.xZn) _ Pf(yx’f c1+a; Xﬁ Cn+ﬂn)

= FS(yxf] & eeoxy OF(xY" o xy)-

= yl/pexil .. .x;” . Ff(x;ll .. .xZ”)
Note that we have used that K is perfect in the last step. This shows that the purported basis
spans.

To see this set is linearly independent, suppose that we have some f1,...,5; € Bandsy,...,s; €S
such that } ;s;f; = 0. Note that in a product

e
sifi=s; - Fo(x]!-o-xg") = FE(sP x)t oo x),

e
every monomial occurring in the polynomial Sf x?l ---x," has exponents by,...,b, such that
b;j = a; mod p°. In particular, writing each s;8; as F; of some polynomial as above, the
polynomials that occur have mutually distinct monomials, and thus cannot cancel each other.
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It follows that s;5; = 0 for each 7, which implies s; = O for each i. This shows that B is a free
basis. O

Intuitively, this proof shows that viewing S as the S-module F{S breaks apart into pieces of the
form S - F; (x{ll1 ---x,") consisting of all polynomials whose exponent vectors are coordinatewise
congruent to (ay,...,a,). Various applications of the Frobenius are based on taking an element
of S, viewing it as an element F_S, and breaking it into its components in this free S-basis, or
equivalently, applying S-linear maps from F;S back to S. We will return to this idea soon.

This decomposition a special case of the “Fundamental Theorem of Frobenius”.

Theorem 1.5 (Kunz). Let R be a Noetherian ring of characteristic p, and let e > 1. The module F{R
is a flat R-module if and only if R is a regular ring.

A flat module is a weakening of free module (free implies flat), and a polynomial ring over a
field is a key example of a regular ring.
We end with a technical definition that is useful for many purposes.

Definition 1.6. A ring R of characteristic p is F-finite if F,R is a finitely generated R-module;
equivalently, F{R is a finitely generated R-module for all e.

This is a finiteness property, somewhat akin to Noetherianity. In the exercises, you will show
that every finitely generated algebra over a perfect field is F-finite. We can get a more concrete
version of Kunz’ theorem when R is F-finite and local. Recall that a local ring is a ring with a
unique maximal ideal. We often write (R, m) for a local ring to denote R and its maximal ideal,
or (R,m, k) to denote the residue field k = R/m as well. Given any ring R and prime ideal p, we
can obtain a local ring R, for adjoining inverses to every element outside of p, a process called
localization.

A typical example of a local ring is, for a field K and some variables xy,...,x,, the collection
of rational functions for the form

f(x) }
—_— x) has nonzero constant term .
{g(x) |4

This is the local ring K[xy,...,%,](x,,.x, Obtained from the polynomial ring by localization
at the prime (maximal) ideal consisting of polynomials with constant term zero. Another key
example of a local ring is the power series ring K[[xy,...,x,]. These are the two typical
examples to keep in mind of regular local rings.

Corollary 1.7 (Kunz). Let (R, m) be an F-finite Noetherian local ring of characteristic p. The module
F¢R is a free R-module if and only if R is a regular ring.

Example 1.8. If K is a perfect field and S is either

Klx1, s Xnl(xy,0x,) or K[[x1,...,x,]

then F¢S is free with basis
B={F{(x}' - xy") | 0<a; <p°)

as in the polynomial case.
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Exercise set #1

Throughout this problem set all rings have characteristic p.

(1) * Convince yourself, as succinctly as possible, that € I if and only if F{r € F{I.

(2) Let S = F3[x,v]. Find an element in (x,7)> that is not in (x, )3,

(3) Let S = IF5[x,y]. Write out the free basis B for F,S from the proof of Theorem 1.4 and
write the element F,(2x%y” + x°® + x3p* + 2xp?) as an S-linear combination of B.

(4) Let p be a prime ideal in R. Show that F~!(p) = p.

(5) * Let R be a ring and I be an ideal. Show that F¢(I[P‘l) = [F¢(R).

(6) Show that RP = {rP* | r € R} is a subring of R.

(7) Suppose that R is reduced. Show that R = RP’, and that after identifying the source
of the e-th Frobenius map with RP* via the isomorphism you found, the Frobenius map
identifies with the inclusion map RP* C R.

(8) * Let R =F,[x, y]/(xp).

(a) Explain why R has IF,-vector space basis {1,x,x2,x3,...,y,yz,y3,...} (where, by
abuse of notation, we write x for the equivalence class of x in the quotient).

(b) Find an [F,-vector space basis for F{R, and describe the action of R on F/R explicitly
in terms of the action of each basis element of R with each basis element of F¢R.

(c) Show that the ideal (x) of multiples of x in R is isomorphic to R/(y) as an R-module.

(d) Show that, as R-modules,

FR=R-Fle (P Rw)-F(x)o €D R/(x)-F ()

O<i<p® 0<j<p®

(9) Let R = IF,[x?,xp,v?]; i.e, R is the subring of the polynomial ring IF,[x,y] with T,
vector space basis consisting of {x'y/ | i + ] is even}. Find a generating set for F,R as an
R-module. Is your generating set a free basis?

(10) Let K = F,(f1,t,t3,...), the field of rational functions over IF, in countably many vari-
ables. Is K an F-finite field?

(1) (a) Let R be an F-finite ring and I be an ideal. Show that R/I is also F-finite.

(b) Let R be an F-finite ring and x be an indeterminate. Show that R[x] is also F-finite.
Deduce that every finitely generated algebra over a perfect field is F-finite.

(12) Let R be as in (9). Verify directly that F,R has no free basis.

It may be useful to use the fact that if M is a free R-module with basis B and I is an
ideal, then M/IM is a free R/I-module with basis given by the images of B; try different

maximal ideals.

*To be used later in the lectures.
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(13) 3 Let K be a perfect field and S = K[xy,...,x,]. Consider Homg(F¢S,S), the set of
S-linear maps from F¢S to S. Let A ={(ay,...,a,) € Z" | 0 < a; < p°}.
(a) Show that for each a € A, there is a map @, € Homg(F¢S,S) such that

a,,)) _ {1 if (ay,...,a,) =«

D _(Fe(x™...
a(Fi(xy o 0 if(ay,...,a,) € AN{a}.

(b) Consider Homg(F¢S,S) as an S-module by the rule s- ¢(—) = s¢(—). Show that
Homg(F¢S,S) is a free S-module with this action, and find a basis.
(c) Consider Homg(F;S,S) as an F;S-module by the rule F{s- ¢@(—) = ¢(F{s-—). Show

(14) Let R be a ring and I be an ideal. Show that F&*(R/I) = R/IP°].
(15) T Let W be a multiplicatively closed subset of R. Show that F¢(W~!R) = W~IF¢R,
(16) Let K = F,(t1,t2,13,...), and R = K[[x]]. Show that F,R is not a free module. Compare
with Corollary 1.7.
(17) Let R be a ring and I be an ideal. Is F¢*(I) = I'P’] in general?
(18) Let R be a ring containing Q, let 7 be a positive integer, and I an ideal of R. Show that
the ideal (a" | a € I) is equal to I". Compare to problem (2).
(19) T Let R be a Noetherian ring of positive characteristic. Show that Fy is surjective if and
only if R is a finite product of perfect fields.
(20) T Let R be an F-finite Noetherian ring. Show that the singular locus of R is a closed
subset of Spec(R).
(21) T Let R be a regular Noetherian ring and M be a finitely generated module.
(a) Show that Assg(M) = Assg(F¢M) for all e.
(b) Show that Assg(M) = Assg(F**M) for all e.
(c) Do the statements (21a) and (21b) hold if R is not assumed to be regular?

$To be used in Problem set #2.
TRequires some background from Commutative Algebra.
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2. Tight closure
We now discuss a notion based on the IFrobenius map that has many powerful applications.

Definition 2.1. Let R be a ring of characteristic p and I € R be an ideal. The Frobenius
closure of I is the ideal
If:={aeR|a” € 1] for some e > 0}.
Definition 2.2 (Hochster-Huneke). Let R be a domain of characteristic p and I C R be an ideal.
The tight closure of I is the ideal
I':={aeR|3c=0 : ca” eIlPl for all e > 0).
When R is not necessarily a domain, we instead insist that ¢ is not in any minimal prime ideal

of R.

It follows from the definitions that I C I¥ C I*. These are notions that say that an element
is in asymptotically in I, in various senses. The main fact about tight closure we will observe
today is the following:

Theorem 2.3. Let S be a polynomial ring over a perfect field K (or more generally, a regular ring of
characteristic p). Then for any ideal 1 C S, we have I" = 1.

The statement may look a bit odd, but the point of the theorem is that it can be much easier
to check that an element is in I* rather than I. We need a lemma to prepare for the proof.

Lemma 2.4. Let ¢ : A — B be a homomorphism of rings such that B is a free (or more gen-
erally, flat) A-module by restriction of scalars, and let I be an ideal of A, and f € A. Then

(IB:p f)=(I:4 f)B.

Proof. The containment 2 follows from the definitions without assuming anything about B. For
the other containment, let g € (IB :p f), so there exist a; € I and b; € B such that

gf = Zaibi-

Let {B;} be a basis for B as an A-module, so we can write
g=) B bi=) byp;
j j

for some g;,b;; € A. Then substituting in we get
{Z&'ﬂj]f = Zai[zbiiﬁf]
j i j
) feiBi= Z[Z“ibij]ﬁj
j i

j
Now, using the A-linear independence of f3;, we get equations of the form

f8j= Zaibij:

1

so gj € (I :4 f)B; then since g is a B-linear combination of g;, we have g € (I :4 f)B. O
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Proof of Theorem 2.3. We always have I C I* so there is only one containment left to show. Let
a € I*, so there exists ¢ # 0 with ca?’ € 1Pl for all e > 0. In particular, for e > 0 have
ce(IPl:g a?")
Let us consider the analogue of this same containment in F{R:
Féce (FE(IPT) ipeg FE(aP")) = (IFES tpes a),
where we have applied the exercise. By the Lemma and Kunz’ Theorem, we have
Fice(I:s a)FES = F((I:5 a)P),
again using the exercise. That is,
ce(l:ga)lrl.
Ifael, then (I:5a)& S and
ce ﬂ(I ' a)[pe] C ﬂ(I sa)f =0,
ex>0 ex0
a contradiction. Thus, we must have g € I. ]
Let us illustrate a typical application of tight closure. By way of motivation, let K be a field,
and R = K[x] be a polynomial ring in one variable. Given any two elements f, g € R, we claim

that fg € (f2,¢?). To see it, let d be the GCD of f and g, and write f =df’ and ¢ = dg’. Then
f’ and g’ are coprime and R is a PID so we can find 7, s with rf”+s¢g’ = 1. Then

fg=d*f'g' =d’f'g(rf +sg') = 1g'(d* ) +sf (d?g"*) =rg'f* +5f'8" € (f*,8")
Now take a polynomial ring in two variables K[x,y]. The previous argument certainly fails
since R is not a PID, and even more convincingly since
xy & (x2,9%).

The next best thing to hope for that for any f,g,h € K[x,y] we have fgh € (f2,¢? h?). This is
also false; we learned the following example from Anurag K. Singh:

(xp)(x” = p7)(x? +97) € ((x9)%, (x> = %), (x* + 7)),

at least if K has characteristic other than two.
However, the next best thing is true: for any f, g, h € K[x,y] we have f2g%h? € (f3,¢°,h).

Theorem 2.5. Let K be a field, and S = K[x1,...,x,] be a polynomial ring in n variables over K.
Then for any fi,..., fui1 €S, the containment

fln"'fnnJrl € (f1n+1""’ nT—ll)

holds.

We will prove this theorem in the case that K algebraically closed of characteristic p, and
n = 2 just to keep notation simpler. One can in fact deduce the theorem for all fields from this
case. The Theorem holds more generally when S is a regular local ring of dimension 7, though
it requires different techniques in mixed characteristic.

Lemma 2.6. Let R be a local ring of dimension n with an infinite residue field, f € R, and I be
an ideal of R. If f° € I° for some s, then there exists ¢ not in any minimal prime of R such that
cfte(ly,....t,) forallt >0, wherey,...,{, aren general linear combinations of the generators

of I.
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The Lemma follows from some standard facts in integral closure theory; we outline a self-
contained proof in the next exercise set.

Proof of Theorem 2.5 for K of positive characteristic. Standard reductions allow us to replace the
polynomial ring with a regular local ring R of dimension 7 with an infinite residue field. Let’s
just do the case n = 2 for simplicity.

Let f,g,h € R a regular local ring of dimension two with infinite residue field. We need to
show that (fgh)? € (f3,¢3,h3). Observe that (fgh)® € (f3,¢° h%)3. We can apply the Lemma
to get some ¢ # 0 such that c(fgh)’ € (¢,,)" for t > 0. Now take e > 0 and set t = 2p®:

c(fgh)?" e (6, 6)% C (P67 7 ey, 00,00 27
(@8 = (6P (£, 1)
We can rewrite this as ,
c((fgm?) e(f>8%n3)]
for e > 0. This means that (fgh)? € (f3, g3, h3)*. By Theorem 2.3, we deduce that (fgh)? € (f3, g3, h%).
The proof for n > 2 is similar. U

The last thing we want to illustrate is that statements over fields of characteristic zero can be
deduced from statements in characteristic p. We will use the following facts from Commutative
Algebra:

Lemma 2.7. Let A be a finitely generated ring over Z; for example a finitely generated subring of a
field K. Then

(1) For any maximal ideal 1 of A, the quotient A/m is a finite field.
(2) For a polynomial ring S = A[xy,...,x,], and element f € S and ideal I C S, if f € I + mS
for every maximal ideal mu of A, then f € 1.

This is all we need to deduce the Theorem in characteristic zero!

Proof of Theorem 2.5 for K of characteristic zero. We stick with f, g, h for simplicity. Suppose that
we have f,g,h € K[x,p]. Let A be the subring of K generated by the coefficients of f, g, in K;
this is a finite set, so A is a finitely generated ring, and f, g,h € A[x,y]. Now let m be a maximal

ideal of A. Writing ¥ for images modulo m, we have f,g,h € A[x,p]/mA[x,y] = (A/m)[x,p].
Since A/m is a field of characteristic zero, we have

(Fgh?e(F.20) in (A/m)xy)
This means that
(fgh) € (£, ¢> W) +mAlxy] in Alxy].
Since this is true for all maximal ideals m, we deduce that
(fgh)* e (f>.¢%1%) in Alxyl.
But since A C K, we obtain

(fgh)*e(f,¢> 1) in K[xy]. 0
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3. F-singularities

So far we have largely focused on advantageous properties of the Frobenius map when R is a
polynomial ring, or more generally, a regular ring, in light of Kunz’ theorem. Let us focus on
the case of the polynomial ring over a perfect field or the case of an F-finite regular local ring.
In either of these cases, F¢R is free over R. We have applied this in the setting of tight closure
to say that there are “no new relations” in F{R, which then led to triviality of tight closure.
We will now consider the following perspective on freeness of F;R: this means that F;R has
many surjective maps back to R, namely the coordinate maps for a free basis. We will consider
weakenings of the conclusion of Kunz’ theorem by asking for fewer surjective maps back to R.

Definition 3.1. Let R be a ring of characteristic p. We say that R is F-split if there is an
R-module homomorphism ¢ : F,R — R such that ¢(F,1) = 1.

Example 3.2. Let K be a perfect field and S = K[xy,...,x,]. Recall that F,R is a free R-
an

module with basis B = {R(x;l1 ~+xy") | 0 < a; < p}. Among this basis is F,1. There is an
S-linear map ¢ : F,.S — S that sends any element F.s € F.S to the coefficient of F,1 in

the unique expresion of F,s as an S-linear combination of the elements of B. In particular,
@(F.1) = @(1-F,1+0-other elements of B) =1. Thus S is F-split.

Example 3.3. Let K be a perfect field and R = K[x,y]/(xy). We saw in the exercises that
ER=R-Fl1e D R/(y)-F(x)e ) R/(x)-F.)).
O<i<p 0<j<p
An argument similar to the previous example shows that R is F-split.

Lemma 3.4. An F-split ring is reduced.

Proof. We will show that the Frobenius map F : R — F,R is injective. Let ¢ : F,R — R be an
R-module homomorphism with ¢(F,1) = 1. Then for any r € R,

@F(r) = @(F, 1) = o(rF.1) = r(F,1) = r.
Thus, if F(r) = 0, then r = @F(r) = 0 as well. This shows that F is injective, so R is reduced. [J

There are a few useful equivalences for the F-split condition.

Lemma 3.5. Let R be a ring of characteristic p. The following are equivalent:

(1) R is F-split: there is an R-module homomorphism ¢ : F,.R — R such that ¢(F,1) =1

(2) For all e > 0, there is an R-module homomorphism @ : F{R — R such that ¢(F;1) =

(3) For some e > 0, there is an R-module homomorphism ¢ : FER — R such that ¢(F1)=1.

(4) For some e > 0, there is some c # 0 and an R-module homomorphism @ : F{R — R such that
@(Fic)=1.

1.

The implications (2)=(1)=(3)=(4) are clear. The rest are outlined in the exercises.
Lemma 3.6. Let R be an F-split ring and I an ideal. Then I¥ =1.

Proof. Recall that I¥ = {a € R | a?* € I'P’] for some e}. Take some a € IF, so a? € IIP] for
some e. We can rewrite this as

aFel = FaP* € FeIIP°) = [FeR,
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so aF{1 =) ;a;Ffr; with a; € I. By the equivalences above, since R is F-split, we have a map ¢
such that @(F{1) =1. We get

a:(p(anl):(p(Zainn]:Zaigo(Pfri)eI. O

1

1

There is an extremely useful criterion for checking when a ring is F-split.

Theorem 3.7 (Fedder’s criterion). Let (S,m) be an F-finite regular local ring of characteristic p,
and I an ideal of S. Then the ring S/1 is F-split if and only if

1Pl 1 g mlPl,

The colon ideal IP]: I is easy to compute in the special case when I = (f) is a principal ideal
in this case I'P: T = (fP~!). More generally, the colon ideal I/P]: I is easy to compute in the
case that I generated by a regular sequence fi,..., f;. Recall that f;,..., f; is a regular sequence
if f; is a nonzerodivizor modulo fi,..., fi_; for each i. In this case I'P1: T = (f;--- f;)P~1 +1IP].

We will outline the proof of Fedder’s criterion in the exercises.

Example 3.8. Let K be a field, and consider a 3 x 3 matrix

X111 X12 %13
M =|x31 X35 %3]
X31 X32 X33
M is nilpotent if M" = 0 for some n. For any given #, we can write out the nine entries M" as
polynomial expressions of the entries x;; (of degree 1) and we get nine equations to determine
if M" = 0. Much better, M is nilpotent if and only if the characteristic polynomial of M is of
the form T3 = 0, so the coefficients of the characteristic polynomial vanish. These are
X11 X12 X13
, h=|xa1 X220 X3
X31 X32 X33

X11 X12
X21 X22

X X
4 [f1n X3
X31 X33

X X
+ 22 23

f=x11+x0n+x33, §= X370 X33

One can see (e.g., from the next observation) that f,g,h form a regular sequence. Order the
variables x;1 > x1, > X3 > Xp1 > -+ > x33 and take the reverse lexicographic order on the
polynomial ring. Then

LT((fgh)P~1) = LT(f)P7LLT ()P L LT ()P~ = (x11%10%01 X13%00%31 P! e mlP),

so the quotient ring is F-split.

In particular, the ideal generated by f, g,/ is a radical ideal. While one can see this directly
from initial ideal methods in this example, the combination of such methods with Fedder’s
criterion is a useful technique for showing an ideal is radical.

There is a stronger condition that is closely related.

Definition 3.9. Let R be a ring of characteristic p. We say that R is strongly F-regular if
for any ¢ not in any minimal prime of R, there is some e and an R-module homomorphism
@ : FSR — R such that ¢(F¢c) = 1. When R is a domain, this simplifies to: for any c # 0, there
is some ¢ and an R-module homomorphism ¢ : F;R — R such that ¢(Fc) = 1.

It follows from the definition that any strongly F-regular ring is F-split: one can enforce the
definition with ¢ = 1, and use the equivalences established above. If R is strongly F-regular and
¢ not in any minimal prime of R, given an e that “works”, any larger e also “works.”
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Lemma 3.10. Let R be a strongly F-regular ring and I an ideal. Then I* = 1.
Proof. Recall that
I* = {a € R | there exists ¢ not in any minimal prime : ca?’ € I'P"] for e > 0}.

Take some a € I*, so ca”” € IP°] for some ¢ not in any minimal prime and e > 0. We can rewrite
this as

aFfc = F(ca?) e FSIPI = [FCR.
From the definition of strongly F-regular with ¢ and the note above, for all e > 0 there is some
@ : F{R — R such that @(Fic) = 1. Applying ¢, we get

1

a=ap(Fic) = p(aFic) = w[Zaian] =) ap(Er)el O
i
It is a longstanding open question whether a ring with the property that every ideal is tightly
closed is necessarily strongly F-regular.

Proposition 3.11. Let (R, m, k) be an F-finite regular local ring. Then R is strongly F-regular.

Proof- The main point is the Corollary to Kunz’ theorem: F{R is a free R-module for each
e in this setting. Let ¢ # 0. We also need a couple of standard facts from Commutative
Algebra. First, the Krull Intersection Theorem says that (1),,om” = 0 in any local ring. Thus
Nesom?T C M,oomP’ =0, so there is some e such that ¢ € m!P‘l. Second, a consequence of
Nakayama’s Lemma says that for M a finitely generated free module over a local ring (R, m), any
element not in mM is part of a free basis of M. Applying this to F¢R, we have mF¢R = F¢mlP‘],
Thus, with e as above, F{c is part of a free basis for F{R. Completing f; = F{c to a full basis
{n;} for F{R, there is an R-linear map ¢ that sends } ;7;f; to ry. In particular, p(Fc)=1. [

There is an analogue of Fedder’s criterion, called Glassbrenner’s criterion, for strong F-
regularity. However, we will focus on another important source of strongly F-regular rings.

Definition 3.12. Let R C S be an inclusion of rings. We say that R is a direct summand of S
if there is an R-module homomorphism ¢ : S — R such that (1) = 1.

Proposition 3.13. Let R C S be an inclusion of rings of characteristic p, and suppose that R is a
direct summand of S.

(1) If S is a strongly F-regular domain, then R is strongly F-regular.
(2) If S is F-split, then R is F-split.

Proof- We will prove the first statement, as the second is very similar. Let S be strongly F-
regular, and 1 : S — R such that (1) = 1. Suppose that ¢ # 0 in R. There is some e and
S-linear map ¢ : F{S — S such that @(F;c) = 1. Since R C S, ¢ is R-linear as well. The
restriction of the composition 1 o @|geg : FFR — R is an R-linear map sending F{c to 1. This
shows that R is strongly F-regular. O

Example 3.14. Let K be a perfect field. Let R = K[x?,xy,1?] € S = K[x,y]. We claim that R is
a direct summand of S. Note that R is the K-vector space spanned by monomials whose total
degree is even. Any element s € S has a unique expression of the form s = s,,,, + 5,44 where
Seven 1S @ linear combination of monomials of even degree, i.e., 5., € R, and s,;4 is a linear
combination of monomials of odd degree. Thus, there is a well-defined map 1 : S — R given
by 1(s) = Sepen. This map is R-linear: if v € R, then rs = 1S, + So44, Where 15,,,.,, is a linear
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combination of monomials of even degree and rs,;,; is a linear combination of monomials of
odd degree. This means that (rs) = rs,,,., = r1(s), which says that 1 is R-linear.

We now loosely outline an application of strong F-regularity. A magic square of size { with
row sum 7 is a ¢ x t array of nonnegative integers such that each row and each column sums
to n. For example,

1114|114 4
1117 6|9
8 11010 5
131 2|3 |15

is a particularly gaudy magic square of size 4 and row sum 33. There is only one magic square
of size 1 and row sum 7, namely

and there are 17 + 1 magic squares of size 2 and row sum 7, namely

1 n—i

. . 0<i<n.
n—i| 1

Theorem 3.15 (Stanley). Denote by M,(n) the number of t X t magic squares with row sum n. For
any t > 0, the function M;(n) is a polynomial for n > 0.

Outline. Step T- Let K be a field of positive characteristic and S = K[x11,...,x33]. We associate
to each magic square a monomial in S:

i iz s a11 ,.412 433

ajy dpy djjz 0% xll x12 ---x33

431 43z 4ass
and we let R be the K-vector space spanned by these monomials. R is a subring of S. The
number M;(n) is equal to the number of monomials in R of degree nt, or equivalently, the
vector space dimension of R,;. This part is elementary.

Step 2: The ring R is generated over K by magic squares of row sum 1; i.e., R is generated
in a single degree. This boils down to the fact that any magic square is a sum of permutation
matrices, which is a nontrivial fact from combinatorics/convex geometry called the Birkhoff-Von
Neumann Theorem. If we divide all of the degrees in R through by f, then R is generated in
degree one, and M;(n) is now just the Hilbert function of R. It follows from general facts that
M;(n) eventually agrees with a polynomial, but we want to show that it agrees with a polynomial
for all nonnegative values of n.

Step 3: The ring R is a direct summand of S. This is not too hard to show. It then follows
that R is a strongly F-regular graded ring.

Step 4: The fact that R is strongly F-regular forces certain graded pieces of local cohomology
to vanish, which then forces R to be Cohen-Macaulay and the regularity of R to be less than the
dimension of R. These conditions then make the Hilbert function of R a polynomial. U
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Exercise set #2

(1) Explain as succinctly as possible why the ring K[x,y]/(x?) is not F-split nor strongly
F-regular.

(2) Let K be a perfect field of characteristic p and S = K[x,9]xy). Recall that this is
an F-finite regular local ring. Apply Fedder’s criterion to the rings S/(x?) and S/(xv).
Compare this to our other examples.

(3) Let K be a perfect field of characteristic p and S = K[x,9,2](xy,;)- Apply Fedder’s
criterion to:

e S/(x*+y? +z?). It may be helpful to consider the cases with p = 2 and p # 2
separately.

o S/(x*+y*+z

e S/(x>+y3+23). It may be helpful to consider the cases with p =3, p=1 mod 3,
and p =2 mod 3 separately.

(4) Let K be a field of characteristic # 2 and S = K[x,y]. Verify that fgh & (f2,g? h?) for
f=xy,g=x>-v% h=x>+y%

(5) Complete the proof of Lemma 3.5.

4).

Hint: For (3)=(1)=(2), think of R =, F¢*°R as the composition R Ll F{R AR Fe+e'R,
You may find it useful to show that if there is some e that “works” any smaller e “works”,
and if e “works”, then 2e “works”.

(6) Let K be a field, and RC S = K[xq1,...,x33] be the K-vector space spanned by monomi-
als x1}'x{5 -+~ x33’ such that {a;;} is a magic square. Explain why R is a ring, and show
R is a direct summand of S via the K-vector space map 1 : S — R given by

a a a
Pl Xy x33)) =

a1 ,.212 assz . . .
X1 X1y X33 if {a;;} is a magic square
0 otherwise.

(7) Let K be a perfect field of characteristic p and R = K[x,y,z]/(x3 +y3 +23).

(a) If p =2 mod 3, show that (z?)P € (x,y)[p]. Deduce that z? € (x,)F and 2% € (x,p)".
Compare this with (3) above.
(b) If p=1 mod 3, show that z € (x,)*. Deduce that R is not strongly F-regular.

(8) T Lemma 2.6 follows from standard properties of integral closure, but we outline a self-
contained argument in the case of polynomials fi,..., f,;; homogeneous of the same
degree in a polynomial ring S = K[xy,...,x,] over an infinite field K.

(a) Let T be an indeterminate. Explain why K[f;,..., 1] = K[AT,..., fi:1 T] S R[T].

(b) Let fi,..., fus1 € S be homogeneous polynomials of the same degree. Explain why
the inclusion K[¢1T,...,¢,T)C K[AT,..., f,+1T] is module-finite for generic linear
combinations ¢1,...,¢, of fi,..., f,11.

(c) Show that the inclusion R[¢iT,...,¢,T] C R[AT,..., fus1T] is module-finite for
generic {y,...,¢,.

(d) Take an equation (f;T)K+--- = 0 of integral dependence for f;T over R[¢,T,...,{,T]
and collect the terms of the form T*. Use this to show that fik” €l,....0,).

(9) T Let R be a strongly F-regular Noetherian local or graded ring. Show that R is a domain.
Hint: If R has distinct minimal primes, start by finding nonzero f,g such that fg =0
and f + ¢ is not in any minimal prime.

1'Requires some background from Commutative Algebra.
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(10) In this problem, we prove Fedder’s criterion in the case of R = S/I for S = K[xy,...,%,](x,,...x,)
with K perfect. We will use the conclusion of (13) from Problem Set 1 in this setting.
(a) Explain why every R-linear map ¢ : F,R — R is induced from a map ¢ : F,S§ — S
in the sense that ¢(5) = (s), thinking of F,R = F,S/F.,I.
(b) Let @ be as in problem (13) from Problem Set 1 and s € S. Show that (F,s-®)(S) Cm
if and only if s € mlP].
(c) Show that (F,s-®)(I) C I if and only if s € (I!P] : I). Deduce Fedder’s criterion.
(11) In the context of the previous problem, show that

E(IP1:1).H E,S,
Homp(F,R,R) = o )-Homs(F.S S).
F.IlPl.Homg(F,S,S)

(12) ¥ Compute the degree of the polynomial M,(n) for every ¢.

Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, NE-68588, USA
Email address: jack.jeffries@unl.edu



5.1

5.2

The graded minimal free resolution of a graded module was first introduced by Hilbert. Resolutions
continue to be the source of many interesting research questions. This course introduced the basic
concepts in the area, along with important invariants like Hilbert functions, Betti numbers and the
Castelnuovo-Mumford regularity. This course was be taught by Claudia Miller (Syracuse)

Video Links

You can watch the original lectures using the following links:
e Lecture 1 Video
e Lecture 2 Video
e Lecture 3 Video

Lecture Notes

We have included copies of Claudia’s lecture notes and her tutorials.
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5.3 Tutorial Problems
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5.3 Tutorial Problems

Here are the associated tutorial problems.



Problem Set 1 ¢ Minimal Free Resolutions e Claudia Miller

Regular Problems:

1. Construct minimal graded free resolutions of each the following modules over the given ring.
Indicate the shifts, and write the Betti table for each.
a) S = klz,y] and M = S/(2°, 2y, y°)

b) R = kf, )/ (%) and M = R/(z)
c) R=klz,y]/(z®+y?) and M =k = R/m
d) S =k[w,x,y,2] and M = I = (wy — 2%, wz — zy,xz — y?)] <« Try this one at home.

2. Which of the following Betti tables are impossible from general principles as minimal
resolutions of a quotient of a polynomial ring?

0111234 011234 0111234
total: [1 6621 total: |1 86|01 total: | 1 6121
0: 1. ..1. 0: 1.0 ... 0: 1].
1: 1415127 . 1: 1615 .]. 1: 4] .12
2: 201 .. 2: 2010 . 2: 1216 )
3: 1 3: 1 3: 1

3. a) Write the minimal free resolution of k = S/m over S = k[xy, xs).
b) Write out the Koszul complex K (f, g; S) for arbitrary f,g € S. (See definition below.)
c¢) Match your resolution from part (a) with a Koszul as in part (b).
d) Write out the Koszul complex K (f1, fa, f3;.5) for arbitrary fi, f2, f3 in a ring S.

Definition. Given elements fi,..., f. of any ring .5, define the Koszul complex as follows:

e Let FF = S" be the free R-module with basis eq, ..., e,
e Let A" F be its pth exterior power.
This is the free module of rank (;) with basis given by formal products
{eiy e, |1 <iyp <o <y <1}
of subsets of cardinality p of the basis of F.
e Then the Koszul complex K(fi,..., f;;S) on fi,..., f. is the S-free complex

O=NF—---=>ANF-A\F
with differential given on the basis by

Oew €)= S0 (<1 f e, -y, e
Definition. Recall fi,..., f, € m is a regular sequence if (fy,...,f, € m) # S, fiis a
nonzerodivisor on S, and for each ¢ > 1 the element f; is a nonzerodivisor on S/(f1,..., fi—1).
Fact. Given homogeneous elements fi,..., f, of any graded ring S, the Koszul complex

K(fi,..., fr;S) is acyclic (exact in positive homological positions) if and only if fi,..., f.
is a regular sequence on S.

4. Try out some Macaulay2 code, as described at the end of this document.



Advanced Problems:

5. Prove Fact 1 and Fact 2 from Lecture 1.
Hint: Nakayama’s Lemma — there are many versions, for both local and graded settings.
Here are some versions over a standard graded ring R.
Let I be a proper graded ideal in R and M be a finitely generated graded S-module.
o If M =1IM, then M = 0.

e If elements my,...,m, € M are such that their images generate M/IM, then they
generate M. (And, if minimally for M /I M, then minimally for M.)

e If N is a submodule of M such that M = N 4+ IM, then M = N.

These are especially useful for I = m.

6. Prove the Comparison Theorem and some consequences.
Let M and N be R-modules with projective resolutions F' = M and G = N.

(a) For any R-homomorphism f: M — N, there exists a chain map f: F — G lifting f,
that is, with Ho(f) = f. (And it is unique up to homotopy, but you may skip this.)

(b) If M = N, then F' and G are homotopy equivalent. (That is, there are chain maps
between them whose compositions are homotopic to the identity maps.)

(c) Suppose R is local (or graded) and M is finitely generated (and graded).
If F' and G are minimal resolutions of M, then F' and G are isomorphic.
Hint: Nakayama’s Lemma.

(Hence minimal resolutions are unique up to homotopy.)

Computing resolutions using the software system Macaulay2

This program uses Grobner bases, which you will learn about from Fred’s lectures this week!

e Go to the web site macaulay2.com.

e To run code, you may use their online interactive interface:
Click on Macaulay2Web (on the left, just under Try It Out).

e Click on the start/play button at upper right.

e Type in the code — or type into a text file and cut-and-paste to the interface.
item To restart the program hit the reset button at top (or type restart).

(Or you may download the program onto your computer/laptop from the website.)

Here is some Macaulay code for resolutions

S=QQ[x,y,z]
I=ideal(x"~5+y~5)

R=S/I

A=matrix{{x,y}}

M=coker A

F=res(M, LengthLimit=>6)
betti F

You can search the documentation for further useful commands.



Problem Set 2 e Taylor resolution and CM Regularity e Claudia Miller

Regular Problems:

1.

Construct the Taylor resolutions of each of the following.
Which are minimal?
a) R = klx,y,z2]/(2? zyz?, 2°)]
b) R = k[x,y, z,w]/(xyz, yzw)]
¢) R=kl[z,y,z,w|/(xy,yz, zw)] < Try this one at home.
Instead of standard gradings (in N), one can also use multi-grading (in N for some m).
Rewrite the shifts in the resolution you found in part (b) for the following multi-gradings.
e degz = (1,0,0,0), degy = (0,1,0,0), degz = (0,0,1,0), degw = (0,0,0,1)
e degx = (1,0), degy = (1,0), degz = (0,1), degw = (0, 1)

. Determine the regularity of each example in #1.

. Often the CM regularity of a module is achieved at the last step of a resolution.

Give an example to show that it need not be.

Hint: You can do this problem even as a beginner. (Not a complicated construction.)

. Here is an example for #3 that is of the form M = S/I. Find its Betti table using Macaulay?2.

By the way, its resolution is also characteristic-dependent (try char 0 and 2).
I=ideal (x_1#*x_2%x_3, x_1*x_2*x_4, x_1*x_3%x_5, x_1*x_4*x_6, x_1*x_b*x_6,

X_2%x_3%x_6, x_2%x_4*x_5, x_2%x_b*x_6, x_3*x_4*x_5, x_3*x_4%*%x_6)

And here’s a characteristic 0 example from Henry:

I=ideal (x*y+y*u,y~2-y*u,t*z, t*v,x*xz*v ,x*y*t)

. Prove that for any ideal I in a ring S, one has regg [ = regg S/1 + 1.

. Determine the regularity of the residue field k = R/m for each ring below.

a) R = klz,yl/(zy)
b) R = k[z,y]/(2* + y*) (you resolved this one last time)

. Let M be a finitely generated S-module. Prove that

Bi(M) = dimy, Tor; (M, k) and so Bi;(M) = dimy Tor? (M, k);.

. Let I be an ideal in S = k[zy,...,x,]. Prove that its regularity is at most the regularity of

its initial ideal. Hint: Grobner deformation.

. Try out some regularity experiments on Macaulay2 and make some conjectures.

over please...



Advanced Problems:

10. Prove the theorem by Eisenbud and Goto on regularity over S = k[xy, ..., z,].

(a) For the equivalence with the truncated module having a linear resolution:
Use that f3;;(M) = dimy Tor? (M, k); and compute the Tor module by using the Koszul
complex K(xy,...,x,;95) to resolve k.

(b) For the equivalence with local cohomology:

First, by truncating and shifting, we may assume that regg M = 0 (so M has its
generators in degree 0 and M has a linear resolution). Then:

(1) To get from Betti number vanishing to local cohomology, use induction on the Krull
dimension of M together with the short exact sequence

0—HY(M)—=M-—=M-=0
to get a nonzero divisor on M and its associated short exact sequence.
(2) For the reverse direction, use Grothendieck duality:
HE (M) = Extd (M, S)Y
where d = dim S, (—)Y = Homg(—, F), and E = E(K) is the injective hull of &k over S.
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6.1

6.2

In this follow up course on resolutions, we discussed recent techniques and progress in the study of
multigraded modules. In this context, we get “finer” invariants, like a multi-graded version of the
Castelnuovo-Mumford regularity. This course was taught by Christine Berkesch (Minnesota).

Video Links

You can watch the original lectures using the following links:
e Lecture 1 Video
e Lecture 2 Video
e Lecture 3 Video

Lecture Notes

We have included copies of Christine’s lecture notes and her tutorials. Lecture notes were provided
by Mike Cummings and Isidora Bailly-Hall.


https://youtu.be/OSsnoBuqT4I 
https://youtu.be/0ucP5t6WmzY 
https://youtu.be/LVtO3SyFhvc 
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Chapter 6. Multigraded Modules (C. Berkesch, Notes by M. Cummings, |.
102 Bailly-Hall)
6.3 Tutorial Problems

Here are the associated tutorial problems.



Christine Berkesch Multigraded Modules Exercise Session 1

Let k be an algebraically closed field. The NormalToricVarieties package in Macaulay?2
will be helpful for the later problems.

Regular:

1. What is the Cox ring, fan, and fundamental short exact sequence for
k' x P'? k*? P! x P?? P"?

Hint: Work backwards from the fundamental short exact sequence.

2. Let X = P! x P? with S = Cox(X) = Clzg, 21, Yo, Y1, Ya)-
(a) Find a radical ideal I, whose variety is precisely the point p = ([1: 2],[1 : 3 : 4]).
(b) Find a radical ideal for the point ([a : b],[c : d : e]) for any choice of a,b,c,d, e € k
with a # 0 and ¢ # 0.

3. (a) The Weak Nullstellensatz for k™ says that for any ideal J C k[zy,xo,...,z,] = 5,
I(Vary(J)) = v/J, where

VI={feS|3>0:f €J} is the radical of J,

which is again an ideal of S. Use this to show that for ideals / and B in S, Varg. () C
Varg. (B) is equivalent to the existence of some ¢ > 0 such that B C .

(b) Prove the Toric Weak Nullstellensatz: Let Xy be a simplicial toric variety with total
coordinate ring S and irrelevant ideal B. If I C S is a homogeneous ideal, then

Varx(l) = @ in Xy <— B C I for some ¢ > 0.
4. Let X = P! x P'. Consider I = (xg,y0) N (z1,y1) C S = Cox(X) = Kk[xo, 21, Yo, y1] with
irrelevant ideal B = (xq, 1) N (Yo, ¥1)-
(a) What is the variety Vary () of I inside X7

(b) Compute graded minimal free resolutions of S/I, S/I N (xg, 1), S/I N {yo,v1), and
S/1 N B, and compare their lengths.

5. Let S = Cox(P* x P?) = K[z, 21, Yo, Y1, y2) With irrelevant ideal B = (xq, 1) N (Yo, Y1, Y2)-
The curve from lecture is defined by the ideal
Ie = (xgyp + a1yi + zo1y3, Tgy2 + 21 (yo + 1)) + B
In Macaulay2, compute the multigraded resolution for S/Ic. Which powers of (compo-

nents of) B can you intersect with I to construct shorter virtual resolutions for S/Ix?

6. Let X = P! x P! with S = Cox(X) = C[zg, 21, Yo, y1]. Consider the set of five points

V={([L:1)[1:1]), ([1:2,[1:2]), ([1:3],[1:3]), ([L:4],[1:4]), ((L:6],[1:8])}.
In Macaulay2, compute the B-saturated radical ideal Iy defining Y. Then find the graded
minimal free resolution of S/(Iy N (zg,x1)*) for 0 < a < 5.



Christine Berkesch Multigraded Modules Exercise Session 1

Advanced:

7.

10.

Let X = P™ x P"™ x --- x P™ be a product of projective spaces. Fix coordinates for
a point p = (p1,p2, ..., pr), where p; € P" and write down a defining ideal for p inside
S = Cox(X).

Consider X = P™ x P x ... x P™ with Cox ring S and irrelevant ideal

B ={\(x:; | 0<j <),
i=1
Let Z C X be a finite collection of points. For small values of n = (ny,ne,...,n,),
experiment in Macaulay2 to find tuples @ = (aq,as,...,a,) such that S/I N B® has a
resolution of length |n| =ny +ny + -+ +n,. (Here, B* = (_,(z;; | 0 < j < mn)*.)

Let A be a simplicial complex and consider I inside the Cox ring S of some simplicial
toric variety X. How can you modify A to A’ so that the Stanley—Reisner ideals 5 and
I/ define the same subvariety of X7

Let X be a simplicial toric variety with S = Cox(S) and irrelevant ideal B, so that there
is a quotient map m: (k™ \ Varg-(B)) — X. Assume that given a homogeneous ideal
I C S, then

Varx(I) = {n(z) € X | f(z) =0 for all I}
is a closed subvariety of X and all subvarieties of X arise in this way.
(a) Show that there is a bijective correspondence

{closed subvarieties of X} < {homogeneous radlcal}

ideals I C BC S

(b) Show that there is a bijective correspondence

{homogeneous radical ideals I C B C S} «+» {homogeneous B—saturated}

radical ideals I C S



Christine Berkesch Multigraded Modules Exercise Session 2

Let k be an algebraically closed field.

Regular:

1. Let X = P! x P'. Consider
I = (xo,y0) N (z1,71) € S = Cox(X) = k[zo, 21, Yo, 1]

with irrelevant ideal B = (zq, 1) N (Yo, y1)-
(a) Use Macaulay2 to compute the multigraded regularity of S/I.
(b) Compute the resolution of a pair for each generator of the regularity.
(c¢) Compute the resolution of [S/I]|>, for each generator of the regularity and compare
them with the quasilinearity conditions.

2. Let S = Cox(P* x P?) = Kk[xg, 21, Yo, Y1, y2] With irrelevant ideal B = (zq, 1) N (Yo, Y1, Y2)-
The curve from lecture is defined by the ideal

Io = (x3ye + 2297 + wom1ys, 2oys + 25 (yo + 1)) : B™.
(a) Use Macaulay2 to compute the multigraded regularity of S/I.
(b) Compute the resolution of a pair for each generator of the regularity.

(c¢) Compute the resolution of [S/I¢]sq for each generator of the regularity and compare
them with the quasilinearity conditions.

3. Use the Bayer—Sturmfels construction to compute a cellular free resolution for
I = {(a®b, ac,bc?, b*) C Kk[a, b, c].

(a) Use the simplicial complex that is two triangles glued along one side, where the
monomials of degree two to label the vertices of the glued edge.
(b) Why does the opposite choice of diagonal not produce a free resolution?

4. (a) Compute a cellular free resolution for the irrelevant ideal B when X = P".

(b) Compute a cellular free resolution for the irrelevant ideal B when X = P! x P". You
can use a polytope as the underlying space for the cellular resolution of B when X
is any simplicial toric variety.

(c) Relate the polytope from (b) in terms of the fan for X7 Does this same idea work
for any simplicial toric variety? (It should!)



Christine Berkesch Multigraded Modules Exercise Session 2

Advanced:

5. Let X be the second Hirzebruch surface, with rays {(1,0), (0,1),(—1,2), (0,—1)}.
(a) Plot the images of the coordinate hyperplanes in Z* inside RL = R? where

L = span,{(1,0,—1,0),(0,1,2,—1)}.
(b) With L as in (a), use the function use the function
Y: RL — Z* with a+ [a]
to produce a cellular resolution of S/I,, where p is the identity point in X, where

S = Cox(X).
(c) With L as in (a), use the function
Y: RL — 7% with aw ([a],—|a))
to produce a cellular resolution of R/Ix, where A is the image of X — X x X given
by z — (z,z) and R = Cox(X x X).
(d) Repeat part (c) with the function

Y: RL —7Z° with avw (|la],—|a])

to produce a cellular resolution of R/Ix. (In general, this function only yields a
virtual resolution, but this one happens to be acyclic.)



. Grobner Geometry ¢

This course explored the use of Grobner bases, degenerations, and related combinatorics to study
problems in commutative algebra and algebraic geometry. This course was taught by Sergio Da
Silva (Virginia State) and Patricia Klein (Texas A&M).

7.1 Video Links

You can watch the original lectures using the following links:
e Lecture 1 Video
e Lecture 2 Video
e Lecture 3 Video

7.2 Lecture Notes

We have included copies of Sergio and Patricia’s lecture notes and their tutorials.


https://youtu.be/glONOHbGRZw 
 https://youtu.be/4cOhGxwgLm8
https://youtu.be/kRstjxEccDk 
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Grobner Geometry and Applications
June 13, 2025



Background An Example Implications and Questions
@00 (e]e)e) 000000

Geometric Vertex Decomposition

/
/ \ e N
Ny.i Cy,/

laelr hink,

@ A squarefree monomial ideal I is GVD iff I is vertex decomposable.
@ /| GVD = [ is radical.
@ / homogeneous and GVD = then R// is Cohen-Macaulay and / glicci.



Background An Example Implications and Questions
(o] le] (e]e)e) 000000

Toric ldeals of Graphs

o Let G = (V(G), E(G)) be a finite simple graph.

o Define K[E(G)] = K]|ey,...,en] and K[V(G)] = K][vi,..., v].

@ Consider the K-algebra homomorphism ¢ : K[E(G)] — K[V(G)]
p(ei) = xjxx where e; = {xj, xx} for all i € {1,...,n}.

The toric ideal I of the graph G is the kernel of © and is generated by
binomials corresponding to closed even walks on G.



Background An Example Implications and Questions
ooe (e]e)e) 000000

Properties

(g,e,f,a) — fg—aeclg
(g,e,f,a,g,d,c,b) — cfg? — abde € Ig
@ Primitive closed even walks define a universal Grobner basis for /.

o If Ig possesses a squarefree degeneration, then R/l is both normal
and Cohen-Macaulay.

o Ny =lg\y



Background An Example Implications and Questions
(e]e]e] [ _JeJe) 000000

IK5 C.X

45,1

X12X34 — X14X23  XI2X34 — XI4X23
X13X24 — X14X23  XI3X74 — XI4X23
X12X35 — X15X23  XT2X35 — XI5X23
X13X25 — X15X23  XI3XP5 — XI5X73
X12X45 — X15X24

X14X25 — X15X24  X14X25 — X15X24
X13X45 — X15X34

X14X35 — X15X34  X14X35 — X15X34
X23X45 — X25X34

X24X35 — X25X34  X24X35 — X25X34

o
e



Background An Example Implications and Questions
(e]e]e] (o] Jo) 000000

Ik,

T

Ny.i = Iy Cy.1 = Kigjys - -+ s Xirj,) T loipartite

o | +JeK[xt,..., X ¥1,---,¥s| is GVD iff I is GVD in K[xg, ..., x/]
and J is GVD in K|y, ..., ys].
® (Xij;,---Xij) is GVD by definition.

® Ipipartite 1s GVD since all toric ideals of bipartite graphs are GVD.

@ Ik,\, is GVD by induction.

The toric ideal of a complete graph Ik, is GVD. l




Background An Example Implications and Questions
(e]e]e] ooe 000000

Squarefree Degenerations

Main Goal: Classify which toric ideals /g are GVD. |

If I has a quadratic Grobner basis, then we get a similar setup:

/IG\

Ny,/G = IG\y Cy,/ = <X,'1, ce ,X,'k> -+ IG\y

I has a quadratic GB = K[G] is Koszul = I is quadratically generated

Characterization of when /g has a quadratic generating set was shown by
Hibi, Nishiyama, Ohsugi, and Shikama.

Question: What about /g which have a squarefree degeneration?



Implications and Questions

Background An Example
@®00000

(e]e]e) (e]e]e}

GVD Implications

GVD — weakly GVD

| |

GVD allowing sub < 24 eakly GVD allowing sub

Each version of GVD + homogeneous = glicci = Cohen-Macaulay ]

Can we classify all toric ideals of graphs which are:
@ GVD up to substitution but not GVD
@ Weakly GVD but not GVD allowing substitution
@ Weakly GVD allowing substitution but not weakly GVD
@ Weakly GVD allowing substitution but not GVD allowing substitution



Background An Example Implications and Questions
(e]e]e] (e]e)e) (o] Jelele]e]

GVD up to Substitution but not GVD Examples




Background An Example Implications and Questions
(e]e]e] (e]e)e) (eJe] lelele]

A Graph That Doesn't Fit

Example (Ha, Kara, O'Keefe)
The graph G is Cohen-Macaulay but H = G \ x5 is not.

X3 KXD
/ o/ S

O, &

%)

)

O,

@ /g is not GVD in any sense.
@ /g does not have any lexicographic squarefree degeneration.

@ I is glicci (which is good news for a conjecture from liaison theory).



Background An Example Implications and Questions
(e]e]e] (e]e)e) (eJeJe] lele]

Graph Operations: Star Contractions

i:a b

e:rq
= -
e o

(ace —bd[,ae — fg,bd —cq) — (ac — bd,a — g,bd — cg)

@ If v has degree 2 before and after, then /g, is GVD iff I is GVD.

@ Under certain squarefree assumptions, if Ig is GVD then so is /g, .



Background An Example Implications and Questions
(e]e]e] (e]e)e) (eJeJele] e}

Open Questions

© The toric ideal of a graph /g is normal iff G satisfies the odd cycle
condition (every disjoint pair of odd cycles in G should be connected
by at least one edge). If /g is normal, then it is also Cohen-Macaulay.
Is it true that all such toric ideals are also GVD? Can you prove this
for a special family of graphs?

@ If I is the toric ideal of a graph G, then for any choice y,
Cy,ic = M+ Ig\, where M is a monomial ideal. Provide a
graph-theoretic description of M.

© Let /g be the toric ideal of a graph. Prove that there always exists at
least one edge y € E(G) such that init, (/) = C, ;. N (N, 1. + (¥)).

© (Open ended) Which graph operations on G preserve the GVD
property for Ig? This general question is towards the direction of
classifying which toric ideals are GVD.



Background An Example Implications and Questions
(e]e]e] (e]e)e) OO0000e

Thank youl



13Chapter 7. Grébner Geometry and Applications (S. Da Silva and P. Klein)

7.3 Tutorial Problems

Here are the associated tutorial problems.



GVD SMS mini-course: Grobner Geometry and Applications

Sergio Da Silva and Patricia Klein

June 2025

1 Exercises

Exercises marked with a * require commutative algebra background beyond what has been covered in
this summer school and what would ordinarily be covered in a first semester commutative algebra course.
Please feel free to ask for hints (on anything, but especially on these)!

Throughout, assume that I is an unmixed, homogeneous ideal of the polynomial ring R = £[z1,...,Zy),
that y is a variable of R, that < is a lexicographic term order with y the largest variable, and that

G={yq +7r1,. ., yq + 7k, h1,..., he}

is a <-Grobner basis of I. Assume that init, (I) = Cy ;1 N (N, 1 + (y)) is a geometric vertex decomposition.
Assume that the geometric vertex decomposition is nondegenerate unless otherwise specified.

1. Show that the “bow-tie” simplicial complex I' whose Stanley-Reisner ideal is It = (ab, ae, bd, de) C
Kla, b, ¢, d, €] is not vertex decomposable.

2. (a) Show that {hq,...,hs} is a <-Grobner basis of N, ;, that {¢1,...,qx, h1,..., s} is a < Grobner
basis of Cy, 1, and that {yq1, ..., yqx, k1, ..., he} is a Grobner basis of init, (I).
(b) Show that Cy, ; = (init, (I) : y) and that N, ;1 + (y) = init, (1) + (y).
(c) Show that init (init,(I)) = init< ().
(d) Show that the Hilbert function of I agrees with the Hilbert function of init, (I).
3. Suppose that J is the Stanley—Reisner ideal of I', where the variable x; of R corresponds to the vertex

i. Set R' = k[x1,...,2,1]. Interpreting delp(n) and lkp(,,) as complexes on {1,...,n — 1}, show that
Idelr(i) = INg;,J and that Ilkr(i) = Cwi,J'

4. Show the following;:

(@) For f € Rand t > 1, init, (f*) = (init, (f))".
(b) If I is radical (resp. prime), then N, ; is radical (resp. prime).

(c) If init, (1) is radical, then I is radical. (Optional: This is an example of a much more general
phenomenon. What are other things that you can replace init, (I) by?) Give an example to show
that the converse is not true.

(d) If I is geometrically vertex decomposable, then [ is radical.

5. The purpose of this problem is to show that J admits a geometric vertex decomposition at y if and
only if J has a generating set that is linear in y. Let J be an ideal of R. Show the following;:

(a) If J has a generating set in which each generator is at most linear in y, then the <-Grobner basis
of J also satisfies this property.



10.
11.

12.

13.

14.

15.

16.

17.

18.

(b) Let C = |J,(init,(C) : y*) and N = (f € J | ydoesnotdivide any term of f). Show that
inity (J) = C N (N + (y)) if and only if J has a generating set in which each generator is at most
linear in y.

. Prove that an ideal J C &[z] is geometrically vertex decomposable if and only if J = (ax + b) for some

a,b € K.

. Consider the ideal J = (aeg — bef,ae — bd,cf — dg) C R = kla,...,g] which is generated by a

universal Grobner basis. Prove that R/J is Cohen-Macaulay using geometric vertex decomposability.
(You may also choose to carefully choose some monomial order < on R so that init.(J) has a vertex
decomposable Stanley-Reisner complex.)

. Let X be a generic m x n matrix (i.e., a matrix whose ij*" entry is the variable z;;). Assume m < n.

Let < be the lexicographic order on zp,n, > Zmn—1 >+ > Zm1 > Zm—1n > - -+ > z11. Let J be the ideal
generated by the size m-minors of X. You may assume that the size m-minors of X form a <-Grébner
basis. Show that J is geometrically vertex decomposable.

. (Harder) Let X be a generic m x n matrix, and let J be the ideal generated by the size k-minors for

some k < m < n. Show that J is geometrically vertex decomposable. (Hint: The statement you've
been asked to show is not strong enough for an induction to go through. You'll need to expand the
class of ideals. Part of the exercise is formulating the correct statement. We encourage you to check
with instructors as you consider statements for the induction. Perhaps start with the ideal of size 2
minors of a generic 3 x 3 matrix.)

* Let J be a homogeneous ideal of R. Prove that, if R/.J is normal, then J is prime.

* Prove that, if I is geometrically vertex decomposable and R/I is regular in codimension 1, then I is
prime.

* Let X be a generic m x n matrix, and let J be the ideal generated by the size k-minors for some
k < m < n. Show that R/J is regular in codimension 1. Conclude, using previous exercises, that J is
prime.

* Describe the Hilbert series of R/I in terms of the Hilbert series of R/Cy ; and R/N, ;. How does the
degree of V(I) compare to the degrees of V(C,, ;) and V(N, 1)?

If It is the Stanley—Reisner ideal of the simplicial complex I, then It is geometrically vertex decom-
posable if and only if I is vertex decomposable.

Suppose that I is radical and that the geometric vertex decomposition of I at y is degenerate. If
Cy.1 = (1), then I contains an element of the form y — f for some f € R with no term divisible by y.
If /Cy.1 = \/Ny, 1, then I has a generating set in which no term of any generator is divisible by y.

Let J = (y(zs — 22), ywr,wr(2? + za + wr + s2)).

(a) Show that J is geometrically vertex decomposable.
(b) Show that J has no squarefree initial ideals. (Hint: From Part (a) you know that J is radical.
Therefore, you cannot prove Part (b) by showing that .J is not radical.)

Show that J = (zy — 2?) is geometrically vertex decomposable, but J = (22 — 2?) is not (both as ideals
in k[z,y, z]). Can you guess what condition guarantees that a principal ideal is geometrically vertex
decomposable?

Show that even though the ideal I = (2? — y?) € Cl[x,y] is not geometrically vertex decomposable,
there is a linear change of coordinates ¢ defined by

r=C1T+ Cc2y



19.

20.

21.
22.

23.

S =37 + cuy

where ¢(I) C C[r,s] is geometrically vertex decomposable. Here ¢; € C for i = 1,2,3,4 and the
2 x 2 coefficient matrix is invertible. Can you completely characterize when ¢(I) is geometrically
vertex decomposable? (This question shows that being geometrically vertex decomposable is not an
invariant and highly depends on the coordinates.)

Show that the maximal minors of a generic matrix X form a Grobner basis under any diagonal term
order, i.e., a term order in which the initial term each minor is the product of entries along the antidi-
agonal of the corresponding submatrix X.

(Harder) Let X be a generic m x n matrix. Fix £ < m < n. Show that the size £ minors of X form a
Grobner basis of the ideal they generate under any diagonal term order.

Given the toric ideal /¢, prove that N, ; = I\, where G \ y is formed from G by deleting the edge y.

Pick your favourite graph G and check whether it is geometrically vertex decomposable (hopefully
your favourite graph has more than two cycles).

Some open questions about toric ideals of graphs:

(a) The toric ideal of a graph G is normal if and only if G satisfies the odd cycle condition (every
disjoint pair of odd cycles in G should be connected by at least one edge). If I is normal,
then it is also Cohen-Macaulay. Is it true that all such toric ideals are also geometrically vertex
decomposable? Can you prove this for a special family of graphs?

(b) If I¢ is the toric ideal of a graph G, then for any choice y, Cy ;, = M + Ig\, where M is a
monomial ideal. Provide a graph theoretic description of M.

(c) Let I be the toric ideal of a graph. Prove that there always exists at least one edge y € E(G)
such that init, (Ig) = Cy 1c N (Ny.15 + (1))-

(d) (Open ended) Which graph operations on G preserve the geometrically vertex decomposable
property for I5? This general question is towards the direction of classifying which toric ideals
are geometrically vertex decomposable.






8.1

8.2

. Hilbert Functions of Points (E. Guc

.

This course focuses on the study of homological questions and invariants of points in projective
space (e.g., Hilbert functions, resolutions, regularity). Students saw the interplay between classical
algebraic geometry and commutative algebra, e.g., how to use the Hilbert function to deduce geo-
metric information about the set of points. This course was taught by Adam Van Tuyl (McMaster)
and Elena Guardo (Catania).

Video Links

You can watch the original lectures using the following links:
e Lecture 1 Video
e Lecture 2 Video
e Lecture 3 Video

Lecture Notes

We have included copies of Elena and Adam’s lecture notes and her tutorials. Elena and Adam
have included scanned copies of their handwritten lecture notes.


 https://youtu.be/Tp8ZLxPokTM
https://youtu.be/TU_Iew1xGj8 
 https://youtu.be/heDHsjpm_WA
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8.3 Tutorial Problems 161

8.3 Tutorial Problems

Here are the associated tutorial problems.



HILBERT FUNCTIONS OF POINTS (SMS COMMUATATIVE ALGEBRA SCHOOL)
ELENA GUARDO AND ADAM VAN TUYL

TUTORIAL 1

The goal of this tutorial is to help you become more familiar with the basic properties of ideals of
points, Hilbert functions, and the Hilbert functions of ideals of points in P?. The problems do not
have to be done in any particular order. Tackle the ones that interest you the most. You may want
to start with the last section of this tutorial for some hints on how to do computations involving
points and Hilbert functions in Macaulay2 (also see the lectures of F. Galetto).

I. THE IDEAL OF A SET OF POINTS. The first collection of questions focuses on properties of the
ideal of a set of points. These questions highlight some of the algebraic features of these ideals.

Exercise 1. We defined P" to be the set K"™!\ {(0,...,0)} with an equivalence relation defined
by:
(ag,...,an) ~ (bo,...,by) if and only if there is 0 # ¢ € K such that (bo,...,b,) = (cao, ..., cap).
Convince yourself that this is an equivalence relation.
Exercise 2. For any point P € P", verify that I(P) is a homogeneous ideal.
Exercise 3. Let P = [ag : - : ap] € P" with ap # 0. In the lecture we stated
I(P) = (a1x9 — apz1, a2Tg — AQT2, . . ., AnTy — AOTp).
Prove this claim. Find generators for the ideal I(P) if ag = 0.

Hint. Note that the containment D is straightforward. For the other direction, apply the generalized
division algorithm with a monomial order x,, > x,,—1 > --- > xg.

Exercise 4. If P € P", what is a Grébner basis of I(P)?
Exercise 5. For any point P € P, prove
(1) I(P) is a prime ideal;

(2) I(P) is a complete intersection; and
(3) dim R/I(P) = depth R/I(P) =1 where R = K|z, ..., z,].

Hint. Try the special case P=[1:0:0:---:0] first.

Exercise 6. For any finite set of points X C P", prove

(1) VI = Iy: and
(2) dim R/Ix = depthR/Ix = 1 where R = K]z, ..., zy].

Exercise 7. Let X C P" be a finite set of points. Prove that Ix is a prime ideal if and only if
X ={P}.
Exercise 8.
(1) Let X = {[1:0:0],[0:1:0],[0:0:1]} C P2 Prove that Ix is a monomial ideal. Is this
ideal a complete intersection?
(2) Let X = {[1:0:0,[0:1:0],[0:0:1],[1:1:1]} C P2 Prove that Ix is a complete

intersection.
1
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Remark. Note that Exercise 8 (2) shows that the converse of Exercise 5 (2) is false, that is, there
are sets of points that are complete intersections that are not a single point.

Exercise 9. Find sets of points X C P" such that Ix is a monomial ideal.

II. HILBERT FUNCTIONS AND MACAULAY’S THEOREM. The second collection of questions focuses
on understanding Hilbert functions and the statement of Macaulay’s Theorem.

Exercise 10. Let R = K|z, ...,z,] and let I be a homogeneous ideal of R. Recall that for any
integer d > 0, we define
Ry ={f € R| f is homogeneous of degree d}
and
I;={f €| fis homogeneous of degree d}.
Verify that Ry and I; are K-vector spaces, and that I; is a subspace of Ry.
Exercise 11. Let R = K[xg, x1, z2] and compute dimg R, for d = 0,...,10. Where do these values
appear in Pascal’s triangle? Repeat for R = K]z, z1, x2, x3].
Exercise 12. Let a = 2025. Compute a'? for i = 2,100, and 2025.
Exercise 13. Prove that H: 1361015 --- (’;2) .-+ is an O-sequence.

Exercise 14. Which of following sequences are valid Hilbert functions? If the sequence is valid,
can you find a polynomial ring R and homogeneous ideal I such the Hilbert function of R/I is
given by the sequence?

(1) Hi: 136109 20 30 40 (increasing by 10)
(2) Hy: 13610999 — (stabilizes at 9)
(3) H3: 1369999 — (stabilizes at 9)

Exercise 15. Let F' be a homogeneous element of R = Klxo, ..., zy] of degree d. If I = (F'), prove
that the Hilbert function of R/I is given by

» (Hn) ifo0<i<d
H =9 v '
R/I(Z) {(z+n) _ (Hfj") ifd <iq.

n
III. HILBERT FUNCTIONS OF SETS OF POINTS. The third collection of questions focuses on the
properties of Hilbert functions of sets of points.
Exercise 16. Let X be any set of s points in PL. Prove that the Hilbert function of R/Ix is
Hp,: 1234 s—=1ss—.
Exercise 17. Let X be any set of s points on a line in P™. Prove that the Hilbert function of R/Ix

is
Hpjpy: 1234+ s—1ss—.

Exercise 18. Write out all the possible Hilbert functions of five points in P?. Repeat for ten points
in P3.
Exercise 19. Prove that any set of five points in P? lie on a quadric.

Remark. The question is asking you to show that regardless of how you pick the five points, there
is a homogeneous element of degree two in K[zg, 21, x| that vanishes at all the points. How does
the previous question help?
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Exercise 20. Let X C P" be any finite set of points. Prove that Hp,r, (i) < Hp/r, (i + 1) for all
1> 0.

Hint. Recall that there is a non-zero divisor L € R/Ix. We then have a short exact sequence with
degree 0 maps:

0 —s R/Ix(—1) X5 R/Ix — R/(Ix, L) — 0.

Exercise 21. In the lecture, it was stated that H is the Hilbert function of a set of points in P? if
and only if there exists integers o and ¢ such that

(1) AH(i) =i+ 1for 0 <i<

(2) AH(i+1i) < AH(i)fora<i<o

(3) AH(i) =0 for o <.
Convince yourself that H : 136 9 11 13 14 15 16 16 — is a valid Hilbert function of a set of points
in P2. What is the a and o for this sequence?

Exercise 22. In the previous problem, you showed that H : 1 3 6 9 11 13 14 15 16 16 — is the
Hilbert function of a set of points in P2. This only tells us that there is a set of points in P? with this
Hilbert function, but it doesn’t tell us how to construct a set of points with this Hilbert function.

Here is one procedure to construct a set of points with this Hilbert function.

(1) From H, determine the sequence AH. For example, using the sequence above, we have
AH:1233221110.

(2) We use AH to make a plot of points. Specifically, for each integer i > 0, we plot the points
{(4,0), (4,1),...,(¢,AH(i))}. Keep in mind that our Hilbert function starts at i = 0. For
example, using our AH as above, we have the following graph?

)

(3) We now “projectivize” the plotted points, i.e., point (a,b) in the above grid becomes [1 :
a:b)e P2. In our example, we have

X={[1:0:0,[1:1:0],[1:1:1],[1:2:0],[1:2:1],[1:2:2],[1:3:0],[1:3:1],[1:3:2],
[1:4:0],[1:4:1],[1:5:0],[1:5:1],[1:6:0],[1:7:0],[1:8:0]}.
Verify that the ideal of these 16 points has the desired Hilbert function.

Exercise 23. Prove that the above procedure always gives a sets of points with the correct Hilbert
function.

Remark. You may wish to consult the original paper of Geramita, Maroscia, and Roberts [1].

1Graph courtesy of ChatGPT
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Exercise 24. Find a set of points in P? with Hilbert function H : 1 3 6 10 15 21 21 —

Exercise 25. For each Hilbert function you found in Exercise 18, find a set of points with that
Hilbert function.

Exercise 26. Let R = K|z, x1,x2]. Let Ly, Lo, L3, Ly, L5 be a general set of degree one forms of
R. That is, each L; € R;, and any three of them are linearly independent, i.e., they form a basis
of the vector space R;. Geometrically, each L; corresponds to a line ¢; in P2, and the ideal (L;, Lj)
is the ideal of the point P;; = ¢; N ¢;. Consider the ideal

Ix= () (LiLy).

1<i<j<5
Prove that Ix is the ideal of 10 points in P? whose Hilbert function is H: 13 6 10 10 — .

Remark. The set X in the previous question is called a star configuration since the five general lines
look like a star as shown in Figure 1. For more on star configurations, see [2].

l3 by

€2 ES
41

FIGURE 1. A star configuration of 10 points in P?

Exercise 27. Repeat the previous question, but use 7 general lines instead of 5. How many points
do you construct? What is its Hilbert function? Instead of 7 lines, use ¢ lines for some integer
t > 7. How many points do you construct? What is its Hilbert function?

Exercise 28. Consider a “random” set of 21 points in P?. Try as many different random sets as
you can. What do you expect the Hilbert function to be? Instead of s = 21, try another number.
Is there an expected Hilbert function? Can you prove your guess?

Remark. This question is more open-ended. You are being asked to run some computer experiments
to guess what “most” Hilbert functions of ideals sets of points should look like. Some of the code
in the next section may help.

Exercise 29. In P", consider the following n + 1 points:
X={[1:0:---:0,[0:1:0:---:0],...,[0:0:---:0:1]}.
(1) Prove that Ix is a monomial ideal.

(2) Find the Hilbert function of R/Ix where R = K]z, ..., xy].
(3) What is the simplicial complex associated to Ix via the Stanley-Reisner correspondence?
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(4) What is the f-vector and h-vector of the simplicial complex from the previous part? How
does this relate to the Hilbert function of R/Ix?

Hint. You may want to try n = 2 first.

IV. HILBERT FUNCTIONS, POINTS, AND MACAULAY2. The last collection of problems deal with
computing some of the objects discussed in the lecture.

Exercise 30. Create a Macaulay?2 function that will take as input a point P = [ag : --- : a,] € P
and return the homogeneous ideal I(P).

Answer. We provide an answer to this question in case you simply want to use the code for the
other problems. This code is not optimal! It is provided simply to give you something with which
to work.

idealPoints = P -> (
n = numgens(R);
gensIdeal = {};
for i from 0 to (n-1) do (
gensIdeal = append(gensIdeal,P_O*x_i-P_i*x_0);

)3
i = ideal( mingens ideal(gensIdeal));
return i;

)

Here is an example of the code:

i01 : R = QQ[x_0..x_4]
o001 = R
001 : PolynomialRing

i0o2 : P = {-1,2,2025,3,17}
002 = {-1,2,2025,3,17}
002 : List

i03 : idealPoints(P)
003 = ideal(17x_3 - 3x_4,17x_2 - 2025x_4, 17x_1 - 2x_4,17x_0 + x_4)
003 : Ideal of R

Exercise 31. Create a function that takes a list of points in P" as input and returns the defining
ideal of the set of points.

Exercise 32. Suppose that I is a homogeneous ideal of R. In Macaulay2, the value of the Hilbert
function Hpg/;(d) can be accessed using the command hilbertFunction(d,I). For example

il : R=QQ[x_0,x_1,x_2];

i2 : I = idealPoints({1,2,3});
i3 : hilbertFunction(2,I)

o3 : 1
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This tells us that the Hilbert function of R/I in degree 2 is 1. Write a function that inputs an
ideal and returns the first 10 values of the Hilbert function. Adapt your code so that the user can
determine the number of values of the Hilbert function that are returned.

Exercise 33. Review the documentation for macaulayExpansion(a,i). Use Macaulay2 to check
your answer to Exercise 12.

Exercise 34. Write a program that takes as input positive integers n and s and returns all valid
Hilbert functions of s points in P".

Exercise 35. Let X C P" be a set of s points. Can you find a relationship between the Castelnuovo-
Mumford regularity of Ix and the Hilbert function of R/Ix? Use Macaulay2 to make your conjec-
ture. In the case of P2, relate your answer to the o in Exercise 21.

REFERENCES

[1] A. V. Geramita, P. Maroscia and L. G. Roberts, The Hilbert function of a reduced k-algebra, J. London Math.
Soc. (2) 28 (1983), no. 3, 443-452; MR0724713

[2] A. V. Geramita, B. Harbourne and J. C. Migliore, Star configurations in P", J. Algebra 376 (2013), 279-299;
MR3003727



HILBERT FUNCTIONS OF POINTS (SMS COMMUATATIVE ALGEBRA SCHOOL)
ELENA GUARDO AND ADAM VAN TUYL

TUTORIAL 2

The following problems are based upon the second and third lecture on the Hilbert functions of
points. The problems do not have to be done in any particular order. Tackle the ones that interest
you the most. You may want to look at the end of this tutorial for some hints on how to do
computations involving points in Macaulay?2.

[. SET OF FAT POINTS AND THEIR HILBERT FUNCTIONS. The first collection of questions focuses
on properties of the ideal of a set of fat points. We highlight some of the algebraic features of these
ideals.

We use the following notation for a set of fat points. Let X = {P;,...,Ps} C P" be a set of
distinct reduced points, and my, ..., mg positive integers. We let Z = m; P + - - - + msPs denote
the scheme defined by the ideal

Iy =I(P)™ NI(Py)™ N---NI(P)™.

Exercise 1. Let X = {[1:0:1],[1:2: 3]} = {P, >} C P2, What is the defining ideal of the set
of fat points Z = 3P, + 2P,, i.e., what are the generators of this ideal?

Exercise 2. Prove that for any set of fat points Z = m1 P + - - - + msPs; C P” there is a non-zero
divisor L € R/Iz where L is a homogeneous element of degree 1.
Exercise 3. For any point P € P" and positive integer m > 1, prove

(1) I(P)™ is a primary ideal;

(2) I(P)™ is a complete intersection if and only if m = 1; and

(3) dim R/I(P)™ = depth R/I(P)™ = 1 where R = K[z, ..., x,].

Hint. Try the special case P=[1:0:0:---:0] first.

Exercise 4. For any set of points of fat points Z =m1P, + - - - + msPs C P", prove
(1) VIz = Ix where X ={Py,...,Ps}. ; and
(2) dim R/Iz = depthR/Iz = 1 where R = Kz, ..., zy].

Exercise 5. Let X = {P}, P, Ps} = {[1:0:0],[0:1:0],[0:0: 1]} C P2 Prove that the defining
ideal of Z = 2P, + 3P, + 4P is a monomial ideal.

Exercise 6. Let Z = m P+ - -+msP; be a set of fat points of P". Suppose that Iz is a square-free
monomial ideal. Prove that my = --- =mgs = 1.

Exercise 7. Let P € P” and m > 1 for any postive integer m. What is the Hilbert function of the
fat point Z = mP?

Hint. This problem is easier to solve if you assume P =[1:0:---:0]. What is I in this case?

m+r7lzfl)‘

Exercise 8. If P € P" and m > 1 is an integer, then the degree of the fat point mP is (
How is the degree of fat point related to the answer of your previous question.

1
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Exercise 9. Let Z C P" be any set of fat points. Prove that Hp/r, (i) < Hg/r,(i+1) for all i > 0.

Exercise 10. Let Z = m;P; + --- + myPs C P". We define degZ = 37, (mitbnfl). Prove that
Hpg,(i) < deg Z for all i.

Exercise 11. Explain why H : 1 3 6 10 15 21 20 20 — cannot be the Hilbert function of a set of
fat points in P2. Show that H : 1 2 3 3 — is valid Hilbert function of distinct points in P2, but
there is no set of fat points with this Hilbert function.

II. THE IDEAL OF A SET OF POINTS IN P! x P!, The next collection of questions focuses on
properties of the ideal of a set of points in P! x P'. We highlight some of the algebraic features of
these ideals.

The coordinate ring of P! x P! is R = k[zo,x1,%0,1] with a bigrading induced by degzo =
degx; = (1,0) and degyo = degy; = (0,1). The (bi)degree of the monomial argox‘flygoyll’l is
(ap + a1,bp + b1). An element of F' € R is bihomogeneous if every monomial term in F has the

(bi)degree. An ideal is bihomogeneous if it is generated by bihomogeneous elements.

Exercise 12. For any point P € P! x P!, verify that I(P) is a bihomogeneous ideal.
Exercise 13. Let P = [ag : a1] X [bo : b1] € P! x P! be a point. Prove that
I(P) = (a1 — aoar, biyo — boy1)

Exercise 14. For any point P € P! x P!, prove
(1) I(P) is a prime ideal;
(2) I(P) is a complete intersection; and
(3) dim R/I(P) = depth R/I(P) = 2 where R = K[z, 21, Y0, y1]-

Exercise 15. Prove that for any set of points X C P! x P!, there is a non-zero divisor L € R/Ix
where L is a bihomogeneous element of degree (1,0). Prove that you can also find a non-zero divisor
L’ where deg L' = (0,1).

Exercise 16. Prove that for any set of points X C P! x P!, dim R/Ix =2.

Exercise 17. Find a set of points X C P! x P! with depth(R/Ix) = 1. Find another set of points
Y with depth(R/Iy) = 2.

Remark. For points and fat points in P™, the coordinate ring is always Cohen-Macaulay since we
always that the depth and dimensions of these rings are the same. However, the above exerice
implies that there are sets of points in P! x P! that are Cohen-Macualay, and some that are not.

Exercise 18. Let R = k[xo, x1, Yo, y1] with degz; = (1,0) and degy; = (0,1). Let R;; denote the
vector space of all bihomegeneous elements of degree (¢,7). What is dimy R; ;. Use this result to
find the bigraded Hilbert function of R

Exercise 19. How does the previous exercise change if R = k[xo, ..., Zn, Yo, .- ., Ym] with dega; =
(1,0) and degy; = (0,1).

Exercise 20. Let P € P! x P'. What is the bigraded Hilbert function of R/I(P).
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Exercise 21. Suppose that X = {P;, P,} is a set of two distinct points in P! x PL. Show that there
are exactly three possible bigraded Hilbert functions for R/I(X). Which of these three Hilbert
functions correspond to an ACM set of points.

Exercise 22. Fix a point A € P! and let {Bj,...,Bs} be s distinct points in P!. Let X =
{A X B1,A X By,...,A x B} be s points in P! x P'. What is the bigraded Hilbert function of
R/I(X)? Determine if X is ACM.

Exercise 23. With X as in the last problem, what is bigraded minimal free resolution of of I(X)?

Exercise 24. How would you define a point in P' x P! x --. x P1?

Exercise 25. Find a set of points X in P! x P! x P! x P! where dim R/I(X) = 4, but depthR/I(X) =
2.

Exercise 26. Let P € P! x P'. We can define a “fat point” in P! x P! similarly to points in P".
It is the scheme defined by I(P)™ with m > 1 an integer. Determine a formula for the bigraded
Hilbert function of R/I(P)™



9.1

This course surveyed recent results on F-singularity theory, such as new results about F-regularity,
F-pure thresholds, and test ideals. This course was be taught by Daniel Herndndez (Kansas).

Lecture Notes

We have included copies of Daniel’s lecture notes and his tutorials. The lecture notes were provided
by Stephen Landsittel.



A NUMERICAL INVARIANT IN PRIME CHARACTERISTIC

These are notes taken (verbatim or paraphrased) from a series of three lectures by Daniel
Hernandez at the Fields Institute in Toronto Canada in June of 2025. Throughout these
notes, p will be a (positive) prime integer, and ¢ will denote various natural powers of p.

1. PRELIMINARIES
Setup. Let k be a perfect field of prime characteristic p (so k = k*) and let (R, m) be an
F—finite regular local ring (e.g. we could take R to be k(x| or k[[z]]).

Definition 1.1. We have a ring map F' : R — R given by r — r? for » € R since p is the
characteristic of R. F'is called the Frobenius Homomorphism.

Definition 1.2. R has the subring
RP .= {r? | r € R}.

We see that RP C R is actually a subring using the fact that Frobenius F': R — R is a ring
map.

Example 1.3. We can easily compute some examples of RP for our aforementioned localized
polynomial and power series rings as follows. We can compute these using the fact that

(klz])" = R"[z"] = k[z"] = k2]
as rings (since k is perfect). A

Definition 1.4. Since R is a domain, we can fix an algebraic closure L of the field of fractions
of R, and we can look at the ring R/, which is the following subring of L

RYP .= [y'?c L|recR}).
Comments 1.5. By repeatedly constructing the rings of the preceding two definitions, we
get a commutative diagram of rings

> RP > RP s R > RY/P y RYP —
ya < ya < <

)
S S S S

where we see a fractal-like behavior with an arbitrary starting point (at the ring R we
picked earlier, we could have started at R or R? for some q for instance). All of the rings
to the right of R in the above diagram are free R-modules by Kunz’s Theorem (which we will
state a version of shortly).

Remark 1.6. For all ¢, and ideals I of R the set J := {a? | @ € I} is an ideal in the ring
R?, and hence we get an ideal by extension of this ideal to the ring R

JR = {Znaf]le,néR,aiel}
=1

which is denoted by I'9. The ideal !9 of R is called the ¢"* bracket power of I.

Lemma 1.7. For all ¢ = p® and f € R we have that f9 € I'9
1



2 A NUMERICAL INVARIANT IN PRIME CHARACTERISTIC

Theorem 1.8. (Kunz) Since R is a regular local ring, we have that RY is a free R-module
for all q.

Some notes when R = k[[z, y]]

It suffices look at the case when when ¢ = p. We have that RP C R and each g € R has a
unique expression g = 2097 i<p gi jxiyj where g; ; € R for all 4 and j. Thus we have a ring
surjection

m:R— RP
_ D i J p
9= Y gy = by
0<i,j<p

which we see is R-linear.
For f € Il

On the other hand, if I C R is an ideal and f? € IP! then there are a;,b; € R so that
a; € I and f =" a;b!. Applying m we see that 7(a;) = ¢ for some 7 so that

fr=) A =) (i) = <Z Cibl)p

and hence f =" ¢;b;.

Kunz’s Theorem has the following version (or corollary)
Lemma 1.9. (Kunz) For ideals I,J C R, we have
(I: J)[P] — [l . glpl
since R is regular.
Proof. For those who have seen flatness, this can be seen by the fact that the flat extension

R — R'? respects colons of ideals (and applying the previous version of Kunz’s Theorem).
O

2. HYPERSURFACES

Now we discuss the role of characteristic p methods in singularity of hypersurfaces. We
begin with a very general definition.

Definition 2.1. For a Noetherian local ring (R, m) and a nonzero element f € m, we have
that the number

mult(f) := max{d € Zsy | f € m?}
is finite (by Krull’s Intersection Theorem). mult(f) is called the multiplicity of f. We call f
singular if and only if multf > 2 (as in f vanishes in m/m?).
Example 2.2. Let R = k[[z, y]] where k is a field. Then for 0 # f € m

f=70)+ fz(0)z+ f,(0)y + g
where ¢ is singular. But f(0) = 0 as f € m, so f is singular if and only if 0 = f,(0) =
14(0). A



A NUMERICAL INVARIANT IN PRIME CHARACTERISTIC 3

Objective. We seek a numerical invariant quantifying the severity of a singularity. Now
go back to supposing that (R, m) is a regular local ring. Let 0 # f € m.

1
mult f

which equals one if and only if f is nonsingular. The worse the singularity f is, the larger
mult f is, and hence the smaller 1/multf is, and we have 1/multf € (0,1] N Q.

Naive proposal:

Exercise 2.3. Let (R, m) be a reqular local ring and let 0 # f € m. Prove that

1 N
=supq —
multf P17
Now continue assuming that (R, m, k) is an F-finite regular local ring of prime character-
istic p.
Definition 2.4. Let 0 # f € m. We define the F-pure threshold of f
N
fpt(f) := sup {— q=p° N >0 "¢ m[q]}.
q
Exercise 2.5. Let k be a perfect field and let R = k[[z,]] := k[[z1,...,2,]]. Let 0 # f €
m = (z,) = (x1,...,2,). Prove that

1 n
— < fptf < ———.
multf — Tntf = multf

Exercise 2.6. Let R be the reqular local algebra R = k[[x,y]| over a perfect field k of prime
characteristic p. Let f = y?> — a3. Then

N,teN,t#£0, " emt}.

1/2 p=2
2/3 p=3

=

Irtf 5/6 p=1mod 6
%—Gip p=—1 mod 6.

Example 2.7. (Elliptic curve, more difficult) Let R = k[[x,y, z]] where k is a perfect field
of prime characteristic p. An element A € k\ {0, 1} defines an elliptic curve in P?. Let

=192 —a(r —2)(z — \2).

(p—1)/2 ((p—1)/2)2yi _
fptf — {1 Zi:O ( i ) A 0

We have that

— zla otherwise.

A

Definition 2.8. Let R and f be as per usual (0 # f € m in an F-finite regular local ring
(R, m) of prime characteristic p). We can try to study fptf by looking at the supremum over
one value of ¢ at a time. In this direction, we define

vs(g) == max{N | f ¢ mlo}

and write v(q) := v¢(¢) when f is understood.

vf(q) is called the v-invariant(/s) in the literature.
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Remark 2.9. (Basic facts) Fix the notation of the preceding definition. We see the following.

fpt f sup{va(c‘l)‘qpe}.

foew g (mPhPl = gl
and thus, v(p)p < v(p?), so that

(1) Immediately

(2) f°®) ¢ mlPl so that

p D

(3) The sequence {v(q)/q | ¢ = p°} is increasing and bounded (as fptf is the supremum
of these sequence elements), and v(q) < ¢ for all ¢ so that v(q)/q < 1 for all ¢, and
hence

v(9)

fptf = lim —= < 1.
g0 @

Theorem 2.10. Let R, f, and p be as per usual. Then for all ¢ we have

ve(q) = [fpt(f)q] — 1.

Remark 2.11. Let R, f, and p be as per usual. We have that the F-pure threshold fptf is
positive.

v(p?)

3. BASE p EXPANSIONS AND F-PURE THRESHOLD

3.1. Base p Expansions. Let p be a positive prime number and let A € (0,1]. Then there
exists a unique nonterminating expansion of A\ in base p

A= =
20
for some A, Ag, ... € {0,...,p—1}.

For instance
1 —1 —1
S0+ o
p p p

For e > 1, define the truncation of the expansion of A
e AZ
(Mpe = Z s
i1 P

The following lemma relates nicely to the preceding theorem.

Lemma 3.1. Let p be a positive prime number and let A € (0,1]. Then for all e > 1

. D‘e—l -1
Npe = 22—
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3.2. Connection with F-pure Threshold.

Throughout the rest of this section, let (R, m, k) be an F-finite regular local ring of prime
characteristic p and let 0 # f € m.

By the cut-off exponent, we mean the v-invariant v(q) := vs(gq). Recall that (by Krull’s
Intersection Theorem)

Ngm'd = 0.
Thus f € mlo! for some go, so that v(gy) > 1 and thus v(g)/q0 > 1/qo.

The following statement is very nontrivial.
Theorem 3.2. (Blickle, Mustata, Smith). fptf is a rational number.

Remark 3.3. Let A € (0,1] and consider the base p expansion of A

Ae
)\:ZE

e>1
We have that {). | e > 1} is not eventually zero. We write
A=Az
so that
(N = Ap - A

Theorem 3.4. (Herndndez)

We have for all ¢ = p© that
(fotf)e =v(a)/q
so that (fptf)e — fotf as e — oc.

(one equality is automatic as v(q)/q increases to fptf as ¢ — o00).
Sketch of proof.

We review the following facts for ideals I, J C R.

(1) For g € R, we have (under mild conditions) that g? € I”! if and only if g9 € I'9 for

q=p
(2) We have that (I : J)P = (Il . JPI) by Kunz’s Theorem (since R is regular implies

that the extension R — RY? is flat and so preserves colons).
(3) We always have that

(][q})[q'} — Jlad]
for all ¢, ¢'.
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Fix ¢ = p® and fix e > 1. By definition we have that f*(@ ¢ mld so that
fv(q)+1 e mld

Then by (1) above,
f(v(q)+1)p‘3 — fU(Q)Pe'H?E € m[qpe}7

as in, v(gp®) < v(q)p® + p°, so that

Letting e — oo we obtain
fptf < vig) +1
and hence ¢fptf < v(q) + 1.
3.3. Freedom to move. We have a fixed guy 0 # f € m. Fix ¢ = p°® and fix e > 1. By

Krull Intersection again, there exists ¢o such that f ¢ mao] (which, by the way, is part of
the idea behind positivity of fptf).

Claim (Freedom to move). fv@%w+1 ¢ mlaod

Proof. Suppose on the contrary that fU(@o+1 ¢ mlaod  Asg in,
fv(q)qof e (m[qo])[q]'
Consequently we have
fe ((m[q])[qo} . fv(q)qo>
= (mld . o)l  plol

and mld ; 2@ C m since f*@ ¢ mld (also the equality follows from from the version (2) of
Kunz’s theorem in the preceding subsection), and this is a contradiction (we had f ¢ m!]
previously). O

It is definitional that f*@% ¢ m[P@®l and the statement of the preceding claim is that
we can move slightly from the known value and still avoid the relevant ideal.
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4. CUBIC SURFACES AND EXTREMAL HYPERSURFACES

We now discuss the paper Cubic Surfaces of Characteristic Two of J. Singh, Vraciu, E.
Witt, Z. Kadyrsizova, J. Kenkel, J. page, and K. Smith.

Definition 4.1. Let k be an algebraically closed field of characteristic two, let S = k[z, y, z, w]
be the polynomial ring, and let  C S be an ideal generated by a single cubic form (homoge-
neous polynomial) f. Let X = Zps(I) be the variety defined by this form. So the coordinate
ring of this variety is S(X) = S/ f.

Question 4.2. When is the coordinate ring S(X) = S/ f F-split (or F-pure)?
Question 4.3. If S(X) is not F-pure, what can we say about it?
Fact. There are exactly 20 cubic (monic) monomials in S, so we may identify f with it’s

list of 20 coefficients of these monomials, under some fixed ordering, and hence we have an
identification

{cubic forms in S} +— k%.

Now by forgetting the scaling of f by nonzero scalars (elements of £*) in both sides of
this correspondence we get an identification

{cubic forms in S up to nonzero scaling} +— P}

Fix such a cubic form f € S. In order to understand when S(X) = S/f is F-pure, we
employ Fedder’s Criteria).

Theorem 4.4. (Fedder’s Criteria) Let A be a polynomial ring over a field in prime charac-
teristic and let g € A be a form. Then A/qg is F-pure if and only if fPF~1 € mP.

Applying this to our characteristic two situation, S/ f is F-pure if and only if f € ml? =

2 2
(x1,...,x3).
Remark 4.5. From the calculation mi? = (22,...,22%), clearly 12913, 117924, T17324, and

To314 are the only cubic monomials not in mf. Hence (by Fedder) S(X) = S/f is F-pure
if and only if one of these four monomials supports f.

Now applying our previous correspondence, we get the following inclusion of correspon-
dences

{cubic surfaces Z(f) C P3} < , P9

I I

{such f s.t. S/f is F-pure} <—— {strings of coefficients supported by one of those four monomials}}

Suppose that S/f is not F-pure. f € ml4 implies, since f is a cubic form, that
f= le% + L2x§ + L3x§ + L4:ci

for some linear forms L1, ..., Ly.
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Theorem 4.6. (Kadyrsizova et. al. (same authors)) There are only finitely many non-F -
pure cubic Hypersurfaces up to linear isomorphism.

In fact, they describe a complete list of representatives.

Remark 4.7. (Witt) All non-F-pure cubic hypersurfaces f satisfy fptf = 1/2.
This is the worst possible F-pure threshold such a cubic hypersurface can have.

4.1. Outside of Cubic Surfaces (Same authors). Let k& be an algebraically closed field
(of any prime characteristic p now) and let S = k[z1, ..., z,] be the polynomial ring.

Question 4.8. Regarding a degree d form f € S, what is the worst (‘= minimal) F-pure
threshold that f can have, in terms of d only?

Now fix d > 1 and a degree d form f € S.
Theorem 4.9. If f is reduced (irreducible), then

1
tf > —.
tf 27—

The reduced hypothesis is need for the Frobenius analysis aspect in the argument to work
(see the next theorem below for more context for this comment). The idea of the proof is to
reduce to the two-variable case by intersecting with linear hyperplanes and using Bertini’s
Theorem.

Theorem 4.10. Again let f € S be irreducible, then

1

fotf = -1

if and only if
there exists e > 0 with d — 1 = p° and f € mlP’)
(where m == Sy = (x1,...,2,)).

We note that f € mP?! implies by itself that fptf < #.

Comments on the preceding theorem. Note how d — 1 = p¢ and f € mP’ implies
that (as now f is a form of degree d = p° + 1)

i=1

for some linear forms Ly, ..., L,. The theorem is also obtained when e = 0 as we then just
a quadratic form.

Definition 4.11. A Frobenius form is a form f € S (:= k[z1,...,z,]) such that

=1

for some e > 0 and linear forms L, ..., L,.

We make some remarks on the preceding definition.
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Remark 4.12. Let S and a Frobenius form f = )" | L,z " be as in the preceding definition.
We have for 1 < ¢ < n that
Li = Z aj,ixj
j=1

for some a;; € k. Let A be the matrix A = (a;;),, € k™™ and let ¢ = p° we see that

= (aiamr+ - + a02,)7]
7

= (x({ .. .x%)(l’l .. -xn)T

— (EM)TA(Z)
where (—)7 is matrix transposition. For a matrix M € GL, (k) recall that we get an en-
domorphism ¢y € End(k[zy,...,2,]) given by (z;...2,)" — M((z;...2,)") which is an

isomorphism since M is invertible (we see readily that (¢n)™" = ¢s-1)). In other words,
¢ is a linear change of coordinates. Factoring with respect to the linear change of coor-
dinates a matrix M and recalling our correspondence f <+ A (coming from our calculation
that f = (zl)T A(x)), we see that

on(f) = (MPZPYTA(Mz) = (@) (MP)T) A(Mz)
so that we have a correspondence of operators
dar —— (MPHTAM.

Remark 4.13. Fix all of the notation of the preceding remark. Recall that each invertible
matrix M € GL, (k) is a product of elementary matrices. So we can look a the calculation
of the preceding remark, but where M is just an elementary matrix. In this case we see
that (MP)T is just the p** power of the corresponding row operation (to the elementary
matrix M) and M itself acts (by multiplication) as an elementary column operation. This
combined allows us to view the operator (M [p])TAM more easily, as it is just a column
operation, followed by A, then a p'* power of the corresponding row operation.

Related work. There is related work of J. Singh on test ideals of extremal surfaces,
and work of Smith and Vraciu on completely understanding the F-pure threshold bounds in
more particular situations.
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9.2 Tutorial Problems

Here are the associated tutorial problems.



SEMINAIRE DE MATHEMATIQUES SUPERIEURES (SMS) 2025
WEEK 2: FROBENIUS EXERCISES 1

As in the lecture, k is a perfect field of characteristic p, and (R, m) is an F-finite regular local

ring, which we often assume to be the localization of a polynomial ring over k at the homogeneous
maximal ideal, or a ring of formal power series over k. Throughout, f stands for an element of m.

Elementary number theory.
(1) Compute the base p expansion of the rational number 5/6 for all primes p.
Suggestion: Consider the cases p = 2,p = 3,p =1 mod 6,p = 5 mod 6 separately.
(2) Verify that if A € (0, 1], then the p©-th truncation of A\, or simply e-th truncation of A\ when
p is clear from context, is ([Ap®] — 1)/p°.
(3) Given k,¢,n € N with k 4+ ¢ = n, we write (krfg) = k’}—é, Consider the base p expansions

k=ko+kip+-+kep' =L+ lp+ - +Llep®n=ng+np+--+nep°

with at least one of the terminal coefficients ke, £¢, ne nonzero. Prove that

n _ no Ne mod
k,g o kO,éo keyéﬁ p

where we interpret (k?tet) =0 if k¢ + £ # ny. Conclude that (knf) # 0 mod p if and only if &k
and ¢ sum to n without carrying in base p. This congruence is known as Lucas’ Theorem.
Hint: Over Z/pZ, compute (x + y)™ naively, using the multinomial theorem, then again in
steps (guided by the expansion of n, and Frobenius). Compare the coefficients of ¥y,

(4) Recall the multinomial theorem, and precisely state an analog for multinomial coefficients.

Basic estimates.
(5) Prove that m =sup{N/d: N,d € N, fN ¢ m?}. Briefly explain why if b is an arbitrary

positive integer, then this is the same as sup{N/b°: N,e € N, fV ¢ m*“}.
(6) Prove that if there are n ambient variables, then m < fpt(f) < TIGIR
Hint: Identify a uniform regular power of m contained in a given Frobenius power of m.
(7) Consider a grading in which the degree of each ambient variable is a positive integer, not
necessarily 1, and suppose that f is a homogeneous polynomial with respect to this grading.
For instance, we may take f = y? — 2 under the grading determined by deg(z) = 2 and

deg(y) = 3. Derive a natural upper bound for each v¢(q), and consequently, for fpt(f).

An elementary computation. Consider the formula

> p=2
2
2 p=3
fpt(y? — 23) = ¢ 2
%—& p=>5mod6

(8) Rewrite this in terms of the truncations of 5/6.
(9) Verify that the formula is correct. Suggestion: Compute digit by digit, i.e., start with v¢(p).

Connections with Frobenius split rings.
(10) Prove that the following conditions are equivalent.
(a) R/f is F-split.
(b) /71 ¢ mbl.
(c) fi=t ¢ mld for all ¢ = p°.
(d) fpt(f) = 1.



2

Elliptic curves. Suppose f = ¢z — x(x — 2)(z — A\2) € k[z,y, z] with A € k and A # 0,1. This is
the Legendre form for the equation of an elliptic curve E in P2
p=l p-1 2
(11) Prove that fpt(f) =1 if and only if >, 2, (%) A # 0.
(12) During the lecture, we claimed that if the F-pure threshold is not 1, then it must be 1—(1/p).
Assume this, and show that it implies the following: If f7~' € ml?!, then fP~2 ¢ mlrl.

Properties of the F-pure threshold, as a number. Set A = fpt(f).
(13) Prove that the first digit of the non-terminating base p expansion of A is less than or equal
to every other digit of A.
(14) Fix a positive integer e, and let p be the rational number obtained by repeating the first e
digits appearing in this expansion of A. Prove that A > pu.

Cubic surfaces. This is in anticipation of an upcoming lecture. By a (projective) cubic surface,
we mean a homogeneous polynomial of degree 3 in 4 variables. Here, we work in characteristic 2.
(15) Describe the cubic surfaces f such that the quotient R/f is F-split.
(16) Identify a few specific cubic surfaces not among those identified above, and compute (or
estimate) their F-pure thresholds.



Frobenius Exercises 2
As throughout the lecture k stands for an algebraically closed field of characteristic p > 0.

1. Continue working on any problems on the first worksheet that interest you!

2. Given an invertible 2 x 2 matrix E, describe the induced ring map ¢g : k[z,y] — k[z, y]

3. If f is the Frobenius form corresponding to A = <CCL Z), that is,

f = (az +by)z® + (cz + dy)y*,
verify that ¢z (f) corresponds to the matrix (EP)" AE.
4. Find an invertible 2 x 2 matrix M such that
oum(@y + zy?) = 2° + ¢,
Hint: Translate this to the matrices associated to these Frobenius forms.

5. Describe all Frobenius forms f € klx1,---,x,] whose associated matrix A has rank 1. How
many are there up to linear isomorphism?

Recall that f and ¢ are equivalent up to linear isomorphism if ¢(f) = g for some invertible
matrix M.
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