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Abstract

Given a square matrix A, the condition number is an important invariant that bounds
the changes in the solutions of a system of linear of equations, when we make perturbations
to the system. De Téran, Dopico, and Pérez [1] studied the condition numbers of a family
of companion matrices called Fiedler companion matrices. In this project, we give new
proofs for some of their results, using the description of Fiedler companion matrices due
to Eastman, Kim, Shader, and Vander Meulen [2]. We also study the condition numbers
of striped companion matrices, and we also show in some specific cases that some striped
companion matrices will have smaller condition numbers than any Fiedler companion matrix.
All of these results use the Frobenius norm to find the condition number. In our last chapter
we investigate the condition number of various companion matrices using the spectral norm.
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Chapter 1

Introduction

Whether it be a calculator or a computer, any tool used in doing arithmetic calculations
has a finite amount of memory to store decimal places of a number. In making these cal-
culations, suppose the finite number of decimal places that can be stored is n. If we make
calculations with numbers which exceed that number of decimal places, the computer will
do one of two things. It will either truncate the rest of the digits after the n digits, i.e., it
will omit them, or it will round the number to n digits. Whenever a computer does either of
these things to a number there will be a roundoff error, which could have a severe effect on
calculations. The more calculations done with this roundoff error, the more and more the
error could accumulate, potentially making the calculations rather inaccurate.

In mathematics, it is important to have a good understanding of the roundoff error when
performing calculations. In this paper we explore the condition number which has been
developed to know what kind of inaccuracies to expect when doing calculations on a system
of linear equations A~x = ~b.

When the software MATLAB calculates the roots of polynomials, it uses matrix tech-
niques to find the eigenvalues of a matrix. In particular, for some polynomial p(x), MATLAB
uses companion matrices to the polynomial p(x). Roughly, a companion matrix of p(x) is a
matrix A where p(x) is the characteristic polynomial of A and the coefficients of p(x) appear
in A.

Example 1.1. Consider the polynomial p(x) = x4 + a3x
3 + a2x

2 + a1x+ a0. Now consider
the matrix of the form

A =


−a3 −a2 1 0

1 0 0 0
0 −a1 0 −a0
0 1 0 0

 .
The characteristic polynomial det(xIn − A) = x4 + a3x

3 + a2x
2 + a1x + a0 = p(x). We say

A is a companion matrix to p(x).

In order to understand what kind of innaccuracies to expect when we perform calculations
with a system of linear equations, we conceptualize the “size” of A using matrix norms. For
the majority of this project we will use the Frobenius norm. The norm of a matrix A will aid
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us in computing the condition number, denoted κ(A), which gives us an upper bound on how
sensitive a linear system will be to small changes. The linear systems for this project will
use companion matrices. More detailed explanations of these concepts are discussed later in
Chapter 2.

One of the most well known examples of a companion matrix is the Frobenius companion
matrix. For some monic polynomial p(x) = xn + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0, the

Frobenius companion matrix is a companion matrix to the polynomial p(x) of the form

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1


.

Unfortunately, as the size of the square matrix n goes to infinity, the Frobenius companion
matrix becomes nearly singular, so calculations using the inverse of a Frobenius companion
matrix can be unreliable [1].

In 2003, Fiedler studied a new type of companion matrix, now called Fiedler companion
matrices [4]. Fiedler showed that you can create n×n companion matrices by multiplying n
matrices from a particular class of matrices together, and each permutation of the integers
{0, . . . , n− 1} would give a different Fiedler companion matrix.

We illustrate with a very small example.

Example 1.2. Suppose that p(x) = x3 + a2x
2 + a1x+ a0. Define

M0 =

1 0 0
0 1 0
0 0 −a0

 ,M1 =

1 0 0
0 −a1 1
0 1 0

 ,M2 =

−a2 1 0
1 0 0
0 0 1

 .
See chapter 2 for the construction of these matrices. Let σ = (0, 2, 1). Then

Mσ = M0M2M1 =

−a2 −a1 1
1 0 0
0 −a0 0

 .
The characteristic polynomial of Mσ is x3 + a2x

2 + a1x+ a0.

De Téran, Dopico, and Pérez [1] extensively studied the condition numbers of Fiedler
companion matrices in 2012. They discovered many results about upper and lower bounds
of the condition numbers of Fiedler companion matrices, and were able to create explicit
formulas for the norms of these matrices, as well as their inverses. They developed an
ordering for all Fiedler matrices of a particular polynomial, according to increasing condition
numbers, which also provides upper and lower bounds for the ratio of the condition numbers
of any pair of Fiedler companion matrices.
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A companion matrix A to a polynomial p(x) can take various forms, as long as det(xI −
A) = p(x). Eastman and Vander Meulen [3] gave a description of all companion matrices
using a lower Hessenberg form of a companion matrix. An n × n matrix A is a sparse
companion matrix of p(x) is equivalent to a lower Hessenberg matrix. This representation of
a companion matrix is the one that is used in the majority of this project. Fiedler companion
matrices in lower Hessenberg form have the property that the coefficients of the characteristic
polynomial p(x) form a lattice path from the bottom left corner of the companion matrix to
the main diagonal. We called the length of the first leg of the lattice path out of the bottom
left corner of a Fiedler companion matrix in lower Hessenberg from the initial step value.
We used lower Hessenberg form to give new proofs of some of De Téran et. al.’s results. One
of the results is the structure of the inverse of a Fiedler companion matrix. The theorem is
as follows:

Theorem 1.3 (Theorem 3.7). Let p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0 be a
polynomial over R with n ≥ 2 and a0 6= 0. Let M be a Fiedler companion matrix to the
polynomial p(x) in lower Hessenberg form. Let t be the initial step value of M . Then:

(a) M−1 has t+ 1 entries equal − 1
a0
,−a1

a0
, . . . ,− at

a0
, with exactly one copy of each;

(b) M−1 has n− 1− t entries equal to at+1, at+2, . . . , an−1, with exactly one copy of each;

(c) M−1 has n− 1 entries equal to 1; and

(d) the rest of the entries of M−1 are 0.

Inspired by the work of De Téran et. al. the main problem of this project is

Question 1.4. What classes of companion matrices have smaller condition numbers than
the Fiedler companion matrices?

Ideally we would like to be able to compare the condition numbers of general compan-
ion matrices to Fiedler companion matrices. We focus mainly on one particular family of
companion matrices known as striped companion matrices. A striped companion matrix A
in lower Hessenberg form to a ploynomial p(x) = xn + an−1x

n−1 + · · · + a1x + a0, has the
property that the coefficients −a0,−a1, . . . ,−an−1 form horizontal stripes. We found some
specific cases in which a striped companion matrix U to a polynomial p(x) will always have
a better condition number than any Fiedler companion matrix M to the same polynomial
p(x). We first discuss striped companion matrices where all of the stripes are the same size,
and then moved on to the case where the stripes are not all the same size. One of our main
theorems is for the case where the stripes are not the same size:

Theorem 1.5 (Theorem 4.9). Consider the monic polynomial:

p(x) = xn + an−1x
n−1 + an−1x

n−2 + · · ·+ a1x+ 1,

where n is any positive integer. Consider any striped companion matrix U = Cn(s) where
s = (s1, s2, . . . , sr), sr < si ≤ s1 for all i ∈ {2, . . . , r − 1}. Let a`j for j ∈ {1, . . . , r − 1}
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be the the nonzero coefficients of the polynomial p(x) that fall in the column vector ~u of the
matrix

U =


~0 Im 0

~u H In−m−1

−a0 ~yT ~0T


and assume that each nonzero stripe has a nonzero entry in ~u. If M is any lower Hessenberg
Fiedler companion matrix to the polynomial p(x) with initial step value t = sr, then U will
satisfy κF (U) ≤ κF (M) if the entries of U satisfy:

|aka`j − ak+`j | ≤ |ak+`j | for k ∈ {1, . . . , t}.

In the second chapter we introduce all of the necessary definitions for the project. In
chapter three, we reprove some of the results found by De Téran et. al. using the lower
Hessenberg matrix form. For chapter four, we compare the condition numbers of striped
companion matrices and Fiedler companion matrices. We discuss some cases, and the nec-
essary condtions, in which the striped companion matrix will always have a better condition
number than the Fiedler matrix. Finally, in the last chapter we briefly investigate the condi-
tion number of various companion matrices using singular values and another matrix norm
called the spectral norm. In the last chapter of this project we revist some of the results
discussed in De Téran et. al.’s paper [1], and some ways to find the singular values of a
companion matrix A needed to find its spectral condition number.
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Chapter 2

Background

This chapter will describe some relevant information from linear algebra and matrix
analysis that is required for the project. First, we will discuss companion matrices and
some of their properties. Second, we will talk about matrix norms, along with some of their
properties and some specific examples. In the same section we present the idea of a condition
number which uses matrix norms in their definition. Finally, we will describe the condition
number for inversion with respect to the Frobenius norm.

2.1 Companion Matrices

The software MATLAB uses companion matrices to derive the roots of polynomials by
applying matrix techniques used for finding the eigenvalues of a matrix [1]. In this section
we define and discuss companion matrices, along with some of the different forms they can
take, and their properties.

Definition 2.1. Let A be an n × n square matrix. The characteristic polynomial of A,
denoted pA(x), is

pA(x) = det(xIn − A).

For any monic polynomial, one can find a specific type of matrix in which all the coef-
ficients of the polynomial are entries in the matrix, and furthermore, the monic polynomial
is the characteristic polynomial to the matrix A.

Definition 2.2. Given p(x) = xn+an−1x
n−1+an−2x

n−2+ · · ·+a1x+a0, a companion matrix
to p(x) is an n× n matrix A over R[a0, a1, . . . , an−1] such that the characteristic polynomial
of A is p(x). A companion matrix with entries a0, a1, . . . , an−1, with n − 1 entries equal to
one, and n2 − 2n+ 1 zero entries is called a sparse companion matrix.

When discussing the structure of a companion matrix C, we treat the ai entries as formal
variables, not real numbers. We say that A is a realization of a companion matrix C if A
is obtained from C by replacing each of the variable entries by real numbers. We will often
refer to a realization A as a companion matrix, but the context will make clear if A is a
realization. In particular, in these cases, we will see that the coefficients are in R.
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Example 2.3. Consider the polynomial p(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0. Next

consider a matrix of the form

A =


−a4 −a3 1 0 0

1 0 0 0 0
0 −a2 0 −a1 −a0
0 1 0 0 0
0 0 0 1 0

 .
Since det(xI−A) = p(x), A is a companion matrix. In fact, A is a sparse companion matrix.

Example 2.4. A companion matrix to p(x) is not unique. For example, consider again the
same polynomial p(x) = x5 + a4x

4 + a3x
3 + a2x

2 + a1x+ +a0, but let

B =


0 1 0 0 0
0 0 1 0 0
0 0 −a4 1 0
0 0 −a3 0 1
−a0 −a1 −a2 0 0

 .
Since det(xI −B) = p(x), then B is also a companion matrix to p(x).

Example 2.5. A matrix of the form

M =


0 1 0 0 0 0
0 0 1 0 0 0
−a3 −a4 −a5 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1
−a0 −a1 −a2 0 0 0

 .

has characteristic polynomial

p(x) = x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ +a0.

Note that M is a sparse companion matrix to p(x).

Example 2.6. The matrix of the form

D =


0 0 1 −a1 −a0
0 0 1 0 0
1 −1 0 −a2 0
0 1 0 −a4 −a3
0 0 0 1 0


has characteristic polynomial

p(x) = x5 + a4x
4 + a3x

3 + a1x+ +a0.

So D is a companion matrix to p(x), but it is not sparse as it does not have 52−2(5)+1 = 16
nonzero entries.
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For any monic polynomial, the following companion matrix is probably the most well-
known example.

Definition 2.7. Given p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0, the Frobenius
companion matrix is a companion matrix to the polynomial p(x) of the form

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1


.

Example 2.8. Consider the polynomial

p(x) = x3 + a2x
2 + a1x+ +a0.

The matrix of the form

C =

 0 1 0
0 0 1
−a0 −a1 −a2


is a Frobenius companion matrix to p(x).

We now work towards a theorem characterizing sparse companion matrices.

Definition 2.9. A permutation matrix is an n× n matrix obtained by permuting the rows
of the n× n identity matrix, and hence, P T = P−1.

If P is a permutation matrix, then P TP = I, thus, if A is any matrix, then PAP T has
the same characteristic polynomial as A since PAP T and A are similar matrices. So if A is
a companion matrix to a polynomial p(x), then so is PAP T for any permutation matrix P .
We say two matrices A and B are equivalent if there exists a permutation matrix P such
that B = PAP T .

Example 2.10. Consider the companion matrix C from Example 2.8, and the following
permutation matrix

P =

0 0 1
0 1 0
1 0 0

 . Then P−1 = P T = P.

We have that

B = PCP T =

0 0 1
0 1 0
1 0 0

 0 1 0
0 0 1
−a0 −a1 −a2

0 0 1
0 1 0
1 0 0


B =

−a2 −a1 −a01 0 0
0 1 0

 .
So C and B are equivalent.

9



Definition 2.11. Consider the n× n matrix:

A =



a1,1 a1,2 a1,3 a1,4 · · · a1,n
a2,1 a2,2 a2,3 a2,4 · · · a2,n
a3,1 a3,2 a3,3 a3,4 · · · a3,n
a4,1 a4,2 a4,3 a4,4 · · · a4,n

...
...

...
...

...
...

an,1 an,2 an,3 an,4 · · · an,n


.

The ith subdiagonal of A is the set of entries

{ai+j−1,j | j = 1, . . . , n− i}.

The jth superdiagonal a of A is the set of entries

{ai,j+i−1 | i = 1, . . . , n− j}.

The main diagonal of A is the set of entries

{a`,` | ` = 1, . . . , n}.

Definition 2.12. A lower Hessenberg matrix A = [aij] is a matrix that has zeros above the
first superdiaganoal, that is, aij = 0 when j > i+ 1. A lower Hessenberg companion matrix
is a lower Hessenberg matrix that is also a companion matrix.

The matrix in Example 2.4 is a lower Hessenberg companion matrix but the matrix in
Example 2.3 is not. However for the remainder of this project we will primarily assume
that our companion matrices are in lower Hessenberg form. The next theorem justifies why
we can make this assumption. As we shall see, many properties of companion matrices are
easily observable in this form. The next theorem characterizes the structure of the sparse
companion matrices. This structure will be helpful when proving results about the condition
numbers of sparse companion matrices.

Theorem 2.13. [2, Corollary 4.3] Let p(x) = xn +an−1x
n−1 +an−2x

n−2 + · · ·+a1x+a0. An
n × n matrix A is a sparse companion matrix of p(x) if and only if there is a permutation
matrix P such that PAP T is equal to a lower Hessenberg matrix of the form: ~0 Im 0

R
In−m−1
~0T

 (2.1)

where R is an (n − m) × (m + 1) matrix with −an−1 in the top right corner, −a0 in the
bottom left corner of the matrix, −an−k on the kth subdiagonal, and 0’s elsewhere.

10



Example 2.14. Let p(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0. Consider the matrix of the

form

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −a3 −a4 1
−a0 −a1 −a2 0 0

 .
We see that A satisfies all the conditions of Theorem 2.13, and hence A is a lower Hessenberg
companion matrix to p(x).

Example 2.15. Let p(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0, and consider the matrix of

the form

M =


0 0 −a1 0 −a0
1 0 0 −a3 0
0 0 0 1 0
0 1 0 −a4 −a2
0 0 1 0 0

 .
Since det(xI − M) = p(x), M is sparse companion matrix. Thus, PMP T has the form
described in Theorem 2.13 for some permutation matrix P . Eastman and Vander Meulen
described an algorithm in [3] (see Algorithm 7.1) to determine an appropriate permutation
matrix P . Indeed, taking

P =


0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0

 , then

PMP T =


0 1 0 0 0
0 0 1 0 0
−a2 0 −a4 1 0

0 0 −a3 0 1
−a0 −a1 0 0 0

 .
In [4], Fiedler descibed a way to construct companion matrices for p(x) = xn+an−1x

n−1+
· · ·+ a0 using particular matrix products.

Definition 2.16. For k ∈ {1, 2, . . . , n− 1}, let

M0 =

[
In−1 0

0 −a0

]
and Mk =


In−k−1 0 0

0

[
−ak 1

1 0

]
0

0 0 Ik−1

 . (2.2)

If σ−1 = (i1, . . . , in) is any permutation of the integers {0, . . . , n − 1}, then the product of
Mσ = Mi1Mi2 . . .Min is a companion matrix of p(x) = xn+an−1x

n−1+an−2x
n−2+ · · ·+a1x+

a0. If a matrix is equivalent to one of these products, then it is called a Fiedler companion
matrix.
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Example 2.17. We show that the matrix in Example 2.3 is, in fact, a Fiedler companion
matrix. Let

M0 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −a0

 ,M1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −a1 1
0 0 0 1 0

 ,M2 =


1 0 0 0 0
0 1 0 0 0
0 0 −a2 1 0
0 0 1 0 0
0 0 0 0 1

 ,

M3 =


1 0 0 0 0
0 −a3 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 , and M4 =


−a4 1 0 0 0

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
Let σ = (4, 2, 1, 0, 3). The corresponding matrix product Mσ = M4M2M1M0M3 gives us the
matrix in Example 2.3:

Mσ = M4M2M1M0M3 =


−a4 −a3 1 0 0

1 0 0 0 0
0 −a2 0 −a1 −a0
0 1 0 0 0
0 0 0 1 0

 .
Therefore the matrix A of Example 2.3 is a Fiedler companion matrix.

Theorem 2.13 implies that any Fiedler companion matrix is equivelant to a lower Hes-
senberg companion matrix. In the next result we describe the lower Hessenberg form of the
Fiedler companion matrices as characterized by Eastman and and Vander Meulen in [3].

Definition 2.18. Suppose that for all k ∈ {0, . . . , n − 2}, if −ak is in position (i, j) of a
matrix A, then ak+1 is either in position (i − 1, j) or (i, j + 1). In this case, the entries
a0, a1, . . . , an−1 are said to form a lattice path in A.

The following theorem shows us that the entries a0, a1, . . . , an−1 in every lower Hessenberg
representation of a Fiedler companion matrix forms a lattice path.

Theorem 2.19. [2, Corollary 4.4] A matrix M is an n × n Fiedler companion matrix if
and only if M is equivalent to a lower Hessenberg matrix as in Theorem 2.13, such that the
nonzero entries of R form a lattice path from the bottom left corner to the upper right corner
of R.

Example 2.20. We again consider the matrix from Example 2.3:

Mσ =


−a4 −a3 1 0 0

1 0 0 0 0
0 −a2 0 −a1 −a0
0 1 0 0 0
0 0 0 1 0

 .
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We saw that we could use Algorithm 7.1 to find the appropriate P matrix to find an equivalent
matrix in lower Hessenberg form. In particular, with

P =


0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0

 , we have

PMσP
T =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −a3 −a4 1
−a0 −a1 −a2 0 0

 .
Notice the lattice path, highlighted with a box.

Example 2.21. Let p(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0. Consider the following

companion matrix of the form

A =


0 1 0 0 0
0 0 1 0 0
0 −a3 −a4 1 0
−a1 0 0 0 1
−a0 0 −a2 0 0

 .
We know that this is a companion matrix from Theorem 2.13. However we see that the ai’s
do not form a lattice path in A. So A is not a Fiedler companion matrix.

De Terán et. al [1] have introduced some definitions related to the product construction
of the Fiedler matrices.

Definition 2.22. Let σ be a permutation of {0, . . . , n− 1}.

• For i = 0, . . . , n− 2, we say that σ has a consecution at i if σ(i) < σ(i+ 1) and that σ
has an inversion if σ(i) > σ(i+ 1).

• The consecution-inversion structure sequence of σ, denoted CISS(σ), is the tuple
(c0, j0, c1, j1, . . . , c`, j`), where σ has c0 consecutive consecutions at 0, . . . , c0− 1. Next,
it has j0 consecutive inversions from c0, c0 + 1, . . . , c0 + j0 − 1, and so on.

• The reduced consecution-inversion structure sequence of σ is the sequence obtained
from CISS(σ) after removing the 0 entries.

• the number of initial consecutions or inversions of σ, denoted tσ, is given by:

tσ =

{
c0 if c0 6= 0

j0 if c0 = 0.
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Example 2.23. Returning to Example 2.17, we used the permutation σ = (4, 2, 1, 0, 3).
That is

σ−1(0) = 4, σ−1(1) = 2, σ−1(2) = 1, σ−1(3) = 0, σ−1(4) = 3.

So from Definition 2.22, there is an inversion at i = 3, because σ(3) = 4 > σ(4) = 0, and we
have inversions at i = 0, 1 because:

σ(0) = 3 > σ(1) = 2

σ(1) = 2 > σ(2) = 1

σ(2) = 1 > σ(3) = 4.

So CISS(σ) = (0, 2, 1, 0), and the reduced CISS(σ) = (2, 1). Furthermore, we get that tσ = 2.

As noted in Example 2.17, Mσ is equal to
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −a3 −a4 1
−a0 −a1 −a2 0 0

 .
As observed in [3], we can view CISS(σ) as a set of instructions on how to use right move-
ments, and upwards movements, to traverse through the lattice path of the lower Hessenberg
form of a Fiedler companion matrix. We can think of the nonzero numbers as the number
of movements to make, either right or up, before you make a turn. For example, since
CISS(σ) = (0, 2, 1, 0) and the first number of the CISS(σ) is a zero then you start moving
right. Two movements right before you turn upward, then one movement up before you turn
right. Since the last number is zero.

Definition 2.24. Let p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0. If M is a Fiedler
companion matrix in lower Hessenberg form to the polynomial p(x), then the initial step size
is the maximum number of nonzero entries in the left most column of M , or the maximum
number of nonzero entries in the bottom row of M .

Example 2.25. The matrix of the form

M =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −a3 −a4 1
−a0 −a1 −a2 0 0


has intial step size of 3.

We have already seen that M has the structure described in Theorem 2.13. We can
further break down the matrix R in the following way:

R =

[
~u H
−a0 ~yT

]
=

[
0 0 −a3 −a4
−a0 −a1 −a2 0

]
.
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This construction of the matrix R will help us to study sparse companion matrices. It is
especially useful in finding the inverse of a sparse companion matrix in lower Hessenberg
form. We can use the following lemma due to Vander Meulen and Vanderwoerd in line (13)
of [9].

Lemma 2.26. [9] Let p(x) = xn+an−1x
n−1 +an−2x

n−2 + · · ·+a1x+a0 be a polynomial over
R. Suppose that A is a companion matrix in lower Hessenberg form to p(x). Then let

A =


~0 Im 0

~u H In−m−1

−a0 ~yT ~0T

 . (2.3)

where a0 6= 0. Then

A−1 =


1
a0
~yT ~0T − 1

a0

Im 0 ~0

− 1
a0
~u~yT −H In−m−1

1
a0
~u

 . (2.4)

Proof. Let

A =


~0 Im 0

~u H In−m−1

−a0 ~yT ~0T

 and B =


1
a0
~yT ~0T − 1

a0

Im 0 ~0

− 1
a0
~u~yT −H In−m−1

1
a0
~u

 .
It a known result that if AB = In, then AB = In = BA. So it suffices to show AB = In.

We can in fact consider both of these matrices as both 3× 3 block matrices; multiplying A
and B together gives

AB =


~0 Im 0

~u H In−m−1

−a0 ~yT ~0T




1
a0
~yT ~0T − 1

a0

Im 0 ~0

− 1
a0
~u~yT −H In−m−1

1
a0
~u


=

 Im 0 0

1
a0
~u~yT −H +− 1

a0
~u~yT −H In−m−1 − 1

a0
~u+ 1

a0
~u

−~yT + ~yT 0 1


= In.

One other type of sparse companion matrix we will consider is the striped companion
matrix introduced in [2]:
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Definition 2.27. Let s = (s1, s2, . . . , sr) be an ordered r-tuple of positive integers that
sum to n, with s1 ≥ si, for 2 ≤ i ≤ r. The striped companion matrix Cn(s) is the sparse
companion matrix in lower Hessenberg form, with an (n − s1 + 1) × (s1) matrix R having
r nonzero rows with the ith nonzero row of R having si entries in the first si positions for
1 ≤ i ≤ r, and si+1 − 1 rows of zeros immediately below it in R, 1 ≤ i ≤ r − 1.

Example 2.28. Let p(x) = x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0, and consider the
following 6× 6 sparse companion matrices to p(x) of the form:

C6(2, 2, 2) =


0 1 0 0 0 0

−a4 −a5 1 0 0 0
0 0 0 1 0 0

−a2 −a3 0 0 1 0
0 0 0 0 0 1

−a0 −a1 0 0 0 0

 and C6(3, 3) =


0 1 0 0 0 0
0 0 1 0 0 0

−a3 −a4 −a5 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−a0 −a1 −a2 0 0 0

 .

Note that the ‘stripes’ in a striped companion matrix do not always have the same number
of nonzero entries, as in the example:

C7(3, 2, 2) =



0 1 0 0 0 0 0
0 0 1 0 0 0 0

−a4 −a5 −a6 1 0 0 0
0 0 0 0 1 0 0

−a2 −a3 0 0 0 1 0
0 0 0 0 0 0 1

−a0 −a1 0 0 0 0 0


.

Note that each ai falls on the appropriate subdiagonal, as required by Theorem 2.13.

2.2 Matrix Norms and Condition Numbers

A matrix norm is a way to measure the “size” of a matrix. We recall the definition given
by Poole [8]:

Definition 2.29. A matrix norm on the set of n × n matrices Mn×n is a mapping that
associates each A ∈ Mn×n with a real number ||A||, called the norm of A, such that the
following properties are satisfied for all A,B ∈Mn×n and all scalars k:

• ||A|| = 0 if and only if A = 0, and otherwise ||A|| > 0;

• ||kA|| = |k| · ||A||;

• ||A+B|| ≤ ||A||+ ||B||; and

• ||AB|| ≤ ||A|| · ||B||.
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Definition 2.30. Let V be a vector space over a field R. A function || · || : V → [0,+∞) is
a vector norm if for all ~x, ~y ∈ V ,

• ||~x|| = 0 if and only if ~x = 0 and otherwise ||~x|| > 0;

• ||k~x|| = |k| · ||~x|| for all scalars k ∈ F; and

• ||~x+ ~y|| ≤ ||~x||+ ||~y||.

Definition 2.31. A matrix norm on Mn×n is said to be compatible with a vector norm ||~x||
on Rn if, for all n× n matrices A and all vectors ~x ∈ Rn, we have

||A~x|| ≤ ||A|| · ||~x||.

Definition 2.32. Let ~x = (x1, · · · , xn) be a vector in Rn. The Euclidean norm for a vector
is given by

||~x||2 =
√
x21 + · · ·+ x2n.

If we change the vector space from Rn to Rn×n we can define a similar norm.

Definition 2.33. Let A = [aij] be a matrix in the set of all n × n matrices denoted Rn×n.
The Frobenius norm of A is given by

||A||F =

√∑
ij

a2ij.

Note that if the matrix A was not square, the Frobenius norm could still be defined. For
the sake of this paper we work with square matries, as companion matrices are square.

Lemma 2.34. The Frobenius matrix norm || · ||F is compatible with the Euclidean vector
norm || · ||2. That is, for a matrix A, and a vector ~x ∈ Rn, we have

||A~x||2 ≤ ||A||F · ||~x||2.

Proof. It suffices to show that ||A~x||22 ≤ ||A||2F · ||~x||22. Since A~x is a column vector by
definition, we have that [A~x]i =

∑n
j=1 aijxj. So

||A~x||22 =
n∑
i=1

(
n∑
j=1

aijxj

)2

.

But by the Cauchy-Schwarz Inequality [5, Theorem 5.1.4], we have that(
n∑
j=1

aijxj

)2

≤

(
n∑
j=1

a2ij

)(
n∑
j=1

x2j

)

=

(
n∑
j=1

a2ij

)
· ||~x||22.
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And so

||A~x||22 ≤
n∑
i=1

(
n∑
j=1

a2ij

)
· ||~x||22 = ||A||2F · ||~x||22

Consider the linear system of equations A~x = ~b. If ~b is nonzero and A is nonsingular,
then there exists a unique solution ~x, which is also nonzero. Consider the perturbed system
Ax̂ = ~b+ δ~b where we added a small vector to ~b. Our hope is that the unique solution x̂, to
Ax̂ = ~b+ δ~b will be close to ~x. Let x̂ = ~x+ δ~x. We would hope that if δ~b is small, then so is
δ~x. We quantify these relative terms of small by using a vector norm. The relative size of δ~b
to ~b is then given by ||δ~b||/||~b||, and the relative size of δ~x to ~x is then given by ||δ~x||/||~x||.
When ||δ~b||/||~b|| is small, we hope that ||δ~x||/||~x|| is as well. This may not happen, as we
see in the next example.

Example 2.35. Suppose that we wanted to solve to following system of equations:[
1000 999
999 998

] [
x1
x2

]
=

[
1999
1997

]
.

If we expand out the system we get:

1000x1 + 999x2 = 1999

999x1 + 998x2 = 1997,

and it is clear by observation that the unique solution to this system is given by ~x = [1 1]T .
Next consider the slightly perterbed system[

1000 999
999 998

] [
x̂1
x̂2

]
=

[
1998.99
1997.01

]
.

So we have a new system

Ax̂ = ~b+ δb, where δ~b =

[
0.01
−0.01

]
After a simple MATLAB computation, we see that the new solution for this perturbed system
is

x̂ =

[
20.97
−18.99

]
, which means δ~x =

[
19.97
−19.99

]
.

So as discussed, we hope that when ||δ~b||/||~b|| is small, that ||δ~x||/||~x|| is as well. For this
calculation we will use the Euclidean norm. So

||δ~b||
||~b||

=

√
0.012 + (−0.01)2√
19992 + 19972

≈ 5.005× 10−6, and

||δ~x||
||~x||

=

√
19.972 + (−19.99)2√

12 + 12
≈ 19.98.
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We had hoped that the relative sizes of δ~b to ~b would be comparable to δ~x to ~x, but it turns
out that ||δ~x||/||~x|| is about 4.0 × 106 times bigger than ||δ~b||/||~b||. So this matrix has the
potential to give us poor accuracy when we make calculations with it.

But we can give a bound for ||δ~x||/||~x|| in terms of ||δ~b||/||~b|| in the following theorem of
Watkins’ book [10].

Theorem 2.36. [10, Theorem 2.2.4] Fix a matrix norm || · ||, and let || · || be a compatible

vector norm. Let A be a nonsingular matrix over R. Let ~x be the solution of A~x = ~b, and
let x̂ = ~x+ δ~x be the solution to Ax̂ = ~b+ δ~b. Then

||δ~x||
||~x||

≤ ||A|| · ||A−1|| ||δ
~b||
||~b||

(2.5)

The factor ||A|| · ||A−1|| is called the condition number with respect to the matrix norm,
and it is a helpful tool to describe and study the sensitivity of a linear system to small
perturbations in the system. Note, however, that it is not exclusive to the Frobenius norm,
and that we can consider the condition number of a system with respect to any norm.

Definition 2.37. Fix any matrix norm || · ||. If A is an invertible (nonsingular) matrix with
inverse A−1, then the condition number of A, denoted κ(A), is

κ(A) = ||A|| · ||A−1||.

We denote the condition number of a matrix A with respect to the Frobenius norm as

κF (A) = ||A||F · ||A−1||F .

We might also consider perturbing A in the system A~x = ~b. Consider the two systems
A~x = ~b, and (A + δA)x̂ = ~b, where ||δA||/||A|| is small. We want to guarantee that

(A + δA)x̂ = ~b indeed has a solution near to that of A~x = ~b. We can consider a theorem
similar to Theorem 2.36 in terms of perturbations to A.

Theorem 2.38. [10, Theorem 2.3.3] Fix a matrix norm || · ||, and let || · || be a compatible

vector norm. Let A be nonsingular, let ~b 6= 0, and let ~x and x̂ = ~x + δ~x be solutions of
A~x = ~b and (A+ δA)x̂ = ~b, resepctively. Then

||δ~x||
||x̂||

≤ κ(A)
||δA||
||A||

.

Theorem 2.38 shows that if the condition number is small, then a small perturbation in
A will not perturb the solution to A~x = ~b by a lot.

Example 2.39. Let

A =

[
400 −201
−800 401

]
, and ~b =

[
200
−200

]
.
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So when we find a solution to the system A~x = ~b we get

~x =

[
x
y

]
=

[
−100
−200

]
.

But when we make a small change in the matrix A, i.e.

A =

[
401 −201
−800 401

]
and calculate the solution again we get that

x̂ =

[
x
y

]
=

[
40, 000
79, 800

]
.

So if x̂ = ~x+ δx, then

δx =

[
40, 100
80, 000

]
.

Thus, if we take the ratio ||δx|| and the original ||~x|| we get

||δx||
||~x||

=

√
8, 008, 010, 000√

50, 000
≈ 400,

which is quite a large ratio for such a small change in the the matrix A.

Example 2.40. Return to the matrix of Example 2.39:

A =

[
400 −201
−800 401

]
.

Using the Frobenius norm, we calculate κF (A). From A, we compute A−1

A−1 =
1

(400)(401)− (−800)(−201)

[
401 201
800 400

]
=

1

−400

[
401 201
800 400

]
=

[
−401

400
−201

400
−2 −1

]
.

Then
||A||F =

√
(400)2 + (−201)2 + (−800)2 + (401)2 =

√
1, 001, 202

and

||A−1||F =

√(
−401

400

)2

+

(
−201

400

)2

+ (−2)2 + (−1)2 =
√

6.2575125.

Thus
κF (A) = ||A||F · ||A−1||F =

√
1, 001, 202

√
6.2575125 = 2503.005.
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This explains why the calculation with a small perturbation in Example 2.39 could give such
a different result. If we fix the vector norm to be the Euclidean norm, and recall Theorem
2.38, it should be the case that

||δ~x||
||x̂||

≤ κF (A)
||δA||F
||A||F

.

From the original example in Example 2.39, we had that

δ~x =

[
40, 100
80, 000

]
, x̂ =

[
40, 000
79, 800

]
, A =

[
400 −201
−800 401

]
, δA =

[
1 0
0 0

]
.

And so

||δ~x||
||x̂||

=

√
40, 1002 + 80, 0002√
40, 0002 + 79, 8002

≈ 1.003 and

κF (A)
||δA||F
||A||F

= 2503× 1√
1, 001, 202

≈ 2.501.

Thus, a small change in A results in a significantly different solution to A~x = ~b. This becomes
a significant issue when one designs algorithms with round-off errors in mind.

We recall that the relative size of δA to A is then given by ||δA||/||A||, and the relative
size of δ~x to ~x is then given by ||δ~x||/||~x||. Theorem 2.38 shows us that when we compare
these numbers we can put an upper bound on it using the condition number. We use the
following definition from Poole [8] to describe what large and small condition numbers mean
to a system of linear equations.

Definition 2.41. A matrix A is ill-conditioned if small changes in its entries can produce
large changes in the solutions to A~x = ~b. If small changes in the entries of A produce only
small changes in the solutions of A~x = ~b, then A is called well-conditioned.

In other words, the larger the condition number, the larger the changes in the solutions
to a system A~x = ~b can be when we make small changes to the matrix A. We saw that the
matrix A in Example 2.39 gave large changes in the solutions to A~x = ~b, and therefore is
ill-conditioned. The following theorem gives us a lower bound on the condition number of
any matrix with respect to any norm.

Theorem 2.42. [10, Proposition 2.2.7] For any square matrix A, and any matrix norm || · ||,

κ(A) ≥ ||I||.

Proof. We have that κ(A) = ||A|| · ||A−1||, and from the axioms of a matrix norm it is the
case that ||A|| · ||A−1|| ≥ ||AA−1|| = ||I||.

Theorem 2.42 implies that the closer a condition number is to ||I||, the better conditioned
it is.
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Lemma 2.43. Fix a matrix norm || · ||. If two companion matrices A and B are equivalent,
then they have the same condition number, i.e., κ(A) = κ(B).

Proof. Suppose that A = PBP T for some permutation matrix P . Then A and B have
the same entries. Since A = PBP T , A−1 and B−1 have the same entries as well. Hence,
κ(A) = κ(B).

2.3 Specific Matrix Norms and their Applications

In this section we introduce some specific types of matrix norms. First we introduce the
Frobenius norm. Although it was introduced in the previous section, we now verify that it
is a norm. In the last chapter we also discuss the spectral norm and how it will help us in
the study of condition numbers.

Recall the definition of the Frobenius norm of a matrix A given in Defnition 2.33:

||A||F =

√∑
ij

|aij|2.

It is straightforward to check that ||A||F is a matrix norm.

• ||A||F = 0 if and only if A = 0 is certainly true.

•

||kA||F =

√∑
ij

|kaij|2 =

√∑
ij

|k|2|aij|2 =

√
|k|2

∑
ij

|aij|2 = |k|
√∑

ij

|aij|2

= |k| · ||A||F

• It suffices to show that ||A+B||2F ≤ (||A||F + ||B||F )2. But for this part we’ll need the
Cauchy-Schwarz Inequality [5, Theorem 5.1.4]:∣∣∣∣∣

n∑
i=n

xiyi

∣∣∣∣∣ ≤
√√√√ n∑

i=n

x2i

√√√√ n∑
i=n

y2i .
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So with this we can solve

||A+B||2F =
∑
ij

|aij + bij|2

=
∑
ij

|aij|2 + 2
∑
ij

|aijbij|+
∑
ij

|bij|2

≤
∑
ij

|aij|2 + 2

√∑
i,j

a2i

√∑
i,j

b2i +
∑
ij

|bij|2

=

√∑
ij

|aij|2 +

√∑
ij

|bij|2

2

= (||A||F + ||B||F )2.

• It suffices to show that ||AB||2F ≤ ||A||2F · ||B||2F . Suppose we have A ∈ Rm×k, and we
have B ∈ Rk×n.

||AB||2F =
m∑
i=1

n∑
j=1

(c2ij)

=
m∑
i=1

n∑
j=1

(
k∑
`=1

(ai`b`j)
2

)

≤
m∑
i=1

n∑
j=1

(
k∑
`=1

a2i`

k∑
`=1

b2`j

)
(By C.S.)

=

(
m∑
i=1

k∑
`=1

a2i`

)(
n∑
j=1

k∑
`=1

b2`j

)
= ||A||2F · ||B||2F
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Chapter 3

Using the Hessenberg form of a
companion matrix

In this chapter, we review the results about condition numbers presented by De Terán et.
al. [1]. In particular, De Terán et. al. determine condition numbers for Fiedler companion
matrices using Fiedler’s product construction. Our goal is to give new, simplified proofs of
these results by using the Hessenberg structure of a Fiedler companion matrix. In fact, we
extend the results of De Terán et. al. by presenting some corresponding results for the larger
class of sparse companion matrices.

In [1] De Terán et. al. use a bijection to describe the structure of Fiedler matrices. The
bijection corresponds to the order in which you multiply the matrices from Definition 2.16.
The following theorem describes the entries of any Fiedler companion matrix.

Theorem 3.1. [1, Theorem 2.8] Let p(x) = xn + an−1x
n−1 + · · · + a0 be a polynomial over

R where n ≥ 2. Let σ = (i1, . . . , in) be a permutation of the integers {0, . . . , n− 1}. Let Mσ

be the Fiedler companion of p(x) associated to σ. Then

(a) Mσ has n entries equal to −a0,−a1, . . . ,−an−1, with one copy of each.

(b) Mσ has n− 1 entries equal to 1.

(c) The rest of the entries in Mσ are 0.

(d) If an entry equal to 1 of those in part (b) is at position (i, j), then either the rest of the
entries in the ith row of Mσ are equal to 0, or the rest of the entries in the jth column
of Mσ are equal to 0.

Example 3.2. To illustrate the last statement of the previous theorem, we revisit Example
2.14. If we let p(x) = x5 +a4x

4 +a3x
3 +a2x

2 +a1x+a0, and consider the companion matrix

24



to p(x) of the form

Mσ =


−a4 −a3 1 0 0

1 0 0 0 0
0 −a2 0 −a1 −a0
0 1 0 0 0
0 0 0 1 0

 ,
we see that for every position that Mσ has a 1, there are zeros either in the rest of the column
or the rest of the row.

Theorem 3.1 (a) − (c) is essentially noting that a Fiedler companion matrix is a sparse
companion matrix. Theorem 3.1 (d) follows from (2.1). The Hessenberg form of these
matrices was noted in Theorem 2.19. As such, Theorem 3.1 could be viewed as a corollary
to Theorem 2.19. With Theorem 3.1, we can compute the Frobenius norm of any Fiedler
companion matrix, which is independent of the permutation σ, and depends only on the
companion matrix’s characteristic polynomial p(x).

Theorem 3.3. Let p(x) = xn + an−1x
n−1 + · · · + a1x + a0 be a polynomial over R, where

n ≥ 2. Then every sparse companion matrix to p(x) has the same Frobenius norm.

Corollary 3.4. [1, Corollary 2.9] Let p(x) = xn + an−1x
n−1 + · · ·+ a0 be a polynomial over

R, where n ≥ 2. Let σ = (i1, . . . , in) be a permutation of the integers {0, . . . , n− 1}, and let
Mσ be the Fiedler companion of p(x) associated to σ. Then

||Mσ||F =
√

(n− 1) + |a0|2 + |a1|2 + · · ·+ |an−1|2.

Since the condition number of a matrix depends on the entries of M and M−1, we need
to consider the entries of M−1 as well. De Terán et. al. in [1] described the structure of the
inverse of a Fiedler companion matrix, and determined all the entries of M−1 using initial
consecutions and inversions, as introduced in Definition 2.22.

Theorem 3.5. [1, Theorem 3.2] Let p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 be a
polynomial over R, with n ≥ 2 and a0 6= 0, and let σ = (i1, . . . , in) be a permutation of the
integers {0, . . . , n− 1}. Let Mσ be the lower Hessenberg Fiedler companion matrix to p(x),
and let tσ be number of initial consecutions or inversions of σ. Then:

(a) M−1
σ has tσ + 1 entries equal to − 1

a0
,−a1

a0
, . . . ,−atσ

a0
, with exactly one copy of each;

(b) M−1
σ has n−1−tσ entries equal to atσ+1, atσ+2, . . . , an−1, with exactly one copy of each;

(c) M−1
σ has n− 1 entries equal to 1; and

(d) the rest of the entries of M−1
σ are 0.

In Theorem 3.5, the entries depend on tσ, which in turn, depends on σ. However, we give
an alternative proof to Theorem 3.5 by relating tσ to the lattice path in the lower Hessenberg
form of a Fiedler companion matrix.
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Definition 3.6. Let p(x) = xn+an−1x
n−1+an−2x

n−2+ · · ·+a1x+a0 be a monic polynomial.
Let M be a Fiedler companion matrix to the polynomial p(x) in lower Hessenberg form. The
initial step size of the lattice path of M , is the number of coefficients other than a0 in the
row or column containing both a0 and a1.

And with this definition, we can prove a result similar to Theorem 3.5.

Theorem 3.7. Let p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 be a polynomial over
R with n ≥ 2 and a0 6= 0. Let M be a Fiedler companion matrix to the polynomial p(x) in
lower Hessenberg form. Let t be the initial step value of M . Then:

(a) M−1 has t+ 1 entries equal − 1
a0
,−a1

a0
, . . . ,− at

a0
, with exactly one copy of each;

(b) M−1 has n− 1− t entries equal to at+1, at+2, . . . , an−1, with exactly one copy of each;

(c) M−1 has n− 1 entries equal to 1; and

(d) the rest of the entries of M−1 are 0.

Proof. Consider Lemma 2.26 which gives us the inverse of any companion matrix in lower
Hessenberg form. Notice that if M is a Fiedler matrix, then the ai entries of the matrix
form a lattice path according to Theorem 2.19. Thus one of the vectors ~u or ~yT in the lower
Hessenberg form of the Fiedler matrix given in Lemma 2.26 will have to be a zero vector.
Without loss of generality, let ~yT be zero, which means that − 1

a0
~u~yT − H = −H. If the

initial step value of F is t, then there will t nonzero elements in ~u, which must take the form

~u =



0
...
0
−at

...
−a1


.

Thus, the inverse of this Fiedler matrix, we will have t entries that have a 1
a0

coefficient from

the 1
a0
~u term in Lemma 2.26. Thus

M−1 =


0 ~0T − 1

a0

Im 0 ~0

−H In−m−1
1
a0
~u

 . (3.1)

The matrix M−1 will have precisely t + 1 entries equal to − 1
a0
,−a1

a0
, . . . ,− at

a0
, and the re-

maining variables appear in H. All of the properties of M−1 in the theorem follow.

With Theorem 3.7 we can recover De Terán et. al.’s computation for the norm of the
inverse of a Fiedler matrix.
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Corollary 3.8. [1, Corollary 3.3] Let p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x + a0 be
a polynomial over R, with n ≥ 2 and a0 6= 0. Let M be a Fiedler companion matrix to p(x),
with an initial step value of t. Then

||M−1||2 = (n− 1) +
1 + |a1|2 + · · ·+ |at|2

|a0|2
+ |at+1|2 + · · ·+ |an−1|2.

Proof. This follows directly from Theorem 3.7.

With Corollary 3.8 and Theorem 3.4, we compute the condition number of a Fiedler
matrix with respect to the Frobenius norm. The next theorem first appeared in De Terán
et. al. [1], and we have re-expressed it using the initial step value.

Theorem 3.9. Let p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 be a polynomial over
R, with n ≥ 2 and a0 6= 0. Let M be a sparse lower Hessenberg Fiedler companion matrix
to p(x), with an initial step value of t. Then

κF (M)2 = ||M ||2F ·
(

(n− 1) +
1 + |a1|2 + · · ·+ |at|2

|a0|2
+ |at+1|2 + . . .+ |an−1|2

)
,

with
||M ||2F = (n− 1) + |a0|2 + |a1|2 + · · · |an−1|2.

Corollary 3.10. [1, Corollary 4.3] Let p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 be
a polynomial over R, with n ≥ 2 and a0 6= 0. Let A and B be Fiedler companion matrices
to the polynomial p(x) in lower Hessenberg form. If the initial step value of both A and B
is t, then κF (A) = κF (B).

Proof. We know that any two companion matrices to the polynomial p(x) will have the same
norm by Lemma 2.43. So we have then that ||A||F = ||B||F . From Corollary 3.8, we also
have that ||A−1||F = ||B−1||F when A and B have the same initial step size. Therefore

κF (A) = ||A||F · ||A−1||F = ||B||F · ||B−1||F = κF (B).

The following corollary is inspired by [1, Corollary 4.3], and gives the necessary conditions
for two Fiedler companion matrices in lower Hessenberg form to have the same condition
number.

Corollary 3.11. Let p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 be a polynomial over
R with n ≥ 2 and a0 6= 0. Let M be any lower Hessenberg Fiedler companion matrix to p(x),
and define St := {M : M is a Fiedler companion matrix to p(x) with initial step size t}.
We then define

κ(t) := κF (M), for M ∈ St.

Then
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(a) if |a0| < 1, then κ(1) ≤ κ(2) ≤ · · · ≤ κ(n− 1);

(b) if |a0| = 1, then κ(1) = κ(2) = · · · = κ(n− 1); and

(c) if |a0| > 1, then κ(1) ≥ κ(2) ≥ · · · ≥ κ(n− 1).

Proof. If |a0| < 1, then it is clear from Theorem 3.9 that κ(M) increases as the number of
coefficients divided by |a0|2 increases. It is the opposite but similar case when a0 > 1.

Theorem 3.12. Let p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 with n ≥ 2. Let

St := {M : M is a Fiedler companion matrix with initial step size t},

i.e., St is the set of all lower Hessenberg Fiedler companion matrices M to the polynomial
p(x) with an intial step size of t, where 1 ≤ t ≤ n− 1. Then

|St| =

{
2n−1−t, if t < n− 1,

2, if t = n− 1.

Proof. Recall the structure of a companion matrix in lower Hessenberg form from Lemma
2.26:

M =


~0 Im 0

~u H In−m−1

−a0 ~yT ~0T

 . (3.2)

If t = n−1, then M has the coefficients −a1, . . . ,−an−1 either completely in ~u or completely
in ~yT . If t < n − 1, then there are t − 1 coefficients that fall in ~u or in ~yT , and then −at
must fall in H. From there, each succeeding −ai, for t+ 1 ≤ i ≤ n−1, can go either directly
to the right, or directly above the previous entry since M has a lattice path. So there are
2n−t−2 ways to do that. We then multiply this by 2 since then −a1, . . . ,−at−1 fall in either
~u or ~yT .

The next result compares condition numbers of general companion matrices with some
restrictions to Fiedler companion matrices.

Theorem 3.13. Let p(x) = xn + an−1x
n−1 + · · · + a1x + a0 be a polynomial over R, with

n ≥ 2, and |a0| > 1, and let M be any Fiedler matrix in lower Hessenberg form, i.e.,

M =


~0 Im 0

~uM HM In−m−1

−a0 ~yTM ~0T


where t is the initial step size of M . Suppose C is any companion matrix to p(x) in lower
Hessenberg form, i.e.,

C =


~0 Im 0

~uC HC In−m−1

−a0 ~yTC ~0T
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where the initial number of nonzero elements in either ~uC or ~yTC is also t. Suppose that
κ(M) ≤ κ(C). Then if either ~uC or ~yTC are zero vectors, and an−1 is in the same position in
both matrices, then:

1 ≤ κ(C)

κ(M)
≤ κ(M).

Proof. We want to show that

||C|| · ||C−1||
||M || · ||M−1||

≤ ||M || · ||M−1||.

Since ||C|| = ||M ||, it suffices to show that

||C−1|| ≤ ||M || · ||M−1||2.

Without loss of generality, assume that ~uC = ~0 in C. This means that

~yTC = (−a1, . . . ,−at−1, 0,−aj1 , . . . ,−ajs , 0, . . . , 0).

In this vector, −a1, . . . ,−at−1 are all nonzero, but aj1 , . . . , ajs do not need to be nonzero.
Consider then, C−1

C−1 =


1
a0
~yTC ~0T − 1

a0

Im 0 ~0

− 1
a0
~uC~y

T
C −HC In−m−1

1
a0
~uC

 .
Because ~uC = ~0, the norm of C−1 would then be

||C−1|| = (n− 1) +

(
1

a0

)2

+
t−1∑
i=1

∣∣∣∣ aia0
∣∣∣∣2 +

s∑
i=1

∣∣∣∣ajia0
∣∣∣∣2 +

∑̀
i=1

|aki |2

= (n− 1) +

(
1

a0

)2

+
∑
ai∈~yTC

∣∣∣∣ aia0
∣∣∣∣2 +

∑
ak∈HC

|ak|2 (3.3)

where {k1, . . . , k`} t {1, . . . , t− 1, j1, . . . , js, } = {1, . . . , n− 1}. We also have that

||M || · ||M−1||2 =

[
(n− 1) +

n−1∑
i=0

|ai|2
]

×

[
(n− 1) +

(
1

a0

)2

+
t−1∑
i=1

∣∣∣∣ aia0
∣∣∣∣2 +

n−1∑
j=t

|aj|2
]

×

[
(n− 1) +

(
1

a0

)2

+
t−1∑
i=1

∣∣∣∣ aia0
∣∣∣∣2 +

n−1∑
j=t

|aj|2
]
. (3.4)

We want to show that ||C−1|| ≤ ||M || · ||M−1||2. To do this we simply consider the four
different summands in (3.3), and show that we can find unique terms in
||M || · ||M−1||2 that is greater than or equal to this summand.
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• The summand (n− 1) in (3.3) is less than (n− 1)3 in (3.4).

• The summand
(

1
a0

)2
in (3.3) is less than (n− 1)2

(
1
a0

)2
in (3.4).

• The summand
∑

ai∈~yTC

∣∣∣ aia0 ∣∣∣2 in (3.3) is less than
∑n−1

i=0 |ai|2(n− 1)
(

1
a0

)2
in (3.4).

• Lastly, the summand
∑

ak∈HC |ak|
2 in (3.3) is less than (n − 1)

∑n−1
j=t |aj|2(n − 1) in

(3.4).

As a consequence, ||C−1|| ≤ ||M || · ||M−1||2.

Corollary 3.11 gives us a result about ascending and descending condition numbers for
Fiedler companion matrices, which allows us put bounds on them in regards to there initial
step values. Theorem 3.13 also uses the initial step size. The question left to ask is whether
or not there exists a similar result for general companion matrices.
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Chapter 4

Comparing Condition Numbers for
Striped and Fiedler Cases

One of the main objectives of this project is to see if we can find other types companion
matrices that have better condition numbers than the Fiedler companion matrices. In this
chapter we explore striped companion matrices. We provide conditions on the coefficients
of the characteristic polynomial so that a striped companion matrix has a better (smaller)
condition number than any Fiedler companion matrices.

4.1 Striped Companion Matrices with the Same Sized

Stripes

When a0 = 1 we can explicitly find the inverse for a sparse companion matrix. If
p(x) = xn + an−1x

n−1 + · · ·+ a1x+ 1 and

A =


~0 Im 0

~u H In−m−1

−a0 ~yT ~0T


is a companion matrix to A then by Lemma 2.26, we can write the inverse as

A−1 =

 ~yT ~0T −1

Im 0 ~0

−~u~yT −H In−m−1 ~u

 . (4.1)

Recall Definition 2.27 of a striped companion matrix, and consider the following lemma:
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Lemma 4.1. Let U = C(m+1)k(k, k, . . . , k), a0 = 1, and a1, . . . , a(m+1)k−1 ∈ R. Then the
inverse for U is

U−1 =



−a1 −a2 . . . −ak−1
~0T −1

Im 0 ~0

−a1amk + amk+1 −a2amk + amk+2 . . . −ak−1amk + a(m+1)k−1

0 0 . . . 0
...

... . . .
...

−a1a2k + a2k+1 −a2a2k + a2k+2 . . . −ak−1a2k + a3k−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−a1ak + ak+1 −a2ak + ak+2 . . . −ak−1ak + a2k−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

In−m−1

−amk

0
...
−a2k
0
...
0
−ak
0
...
0



.

Proof. Note U is the matrix

U =



~0 Ik−1 0

−amk −amk+1 . . . −a(m+1)k−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−aik −aik+1 . . . −a(i+1)k−1

...
... . . .

...
0 0 . . . 0
−a2k −a2k+1 . . . −a3k−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−ak −ak+1 . . . −a2k−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
1 −a1 . . . −ak−1

In−k−1

~0T



.
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This result is a special case of Lemme 2.26. In particular, notice that

− 1

a0
~u~yT =

−1

a0



−amk
0
...
−a2k

0
...
0
−ak

0
...
0



[
−a1 −a2 . . . −ak−1

]
=



−a1amk
a0

−a2amk
a0

. . . −ak−1amk
a0

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−a1a2k
a0

−a2a2k
a0

. . . −ak−1a2k
a0

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−a1ak
a0

−a2ak
a0

. . . −ak−1ak
a0

0 0 . . . 0
...

... . . .
...

0 0 . . . 0



.

From this matrix, we subtract H:

− 1

a0
~u~yT −H =



−a1amk+a0amk+1

a0

−a2amk+1+a0amk+2

a0
. . .

−ak−1amk+a0a(m+1)k−1

a0

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−a1a2k+a0a2k+1

a0

−a2a2k+a0a2k+2

a0
. . . −ak−1a2k+a0a3k−1

a0

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−a1ak+a0ak+1

a0

−a2ak+a0ak+2

a0
. . . −ak−1ak+a0a2k−1

a0

0 0 . . . 0
...

... . . .
...

0 0 . . . 0



.
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With this computation, we use Lemma 2.26 to compute U−1:

U−1 =
1

a0



−a1 −a2 . . . −ak−1
~0T −1

a0Im 0 ~0

−a1amk + a0amk+1 −a2amk+1 + a0amk+2 . . . −ak−1amk + a0a(m+1)k−1

0 0 . . . 0
...

... . . .
...

−a1a2k + a0a2k+1 −a2a2k + a0a2k+2 . . . −ak−1a2k + a0a3k−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−a1ak + a0ak+1 −a2ak + a0ak+2 . . . −ak−1ak + a0a2k−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

a0In−m−1

−amk

0
...
−a2k
0
...
0
−ak
0
...
0



.

The conclusion follows from the fact that a0 = 1.

Our goal is to determine conditions for when striped companion matrices have a better
(i.e., smaller) condition number than any Fiedler matrix. Suppose we have some character-
istic polynomial pM(x) = xn + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0 of a companion matrix

M . Recall that the condition number of the matrix M is:

κF (M) = ||M ||F · ||M−1||F .

By Theorem 3.3, every sparse companion matrix of pM(x) will have the same norm. When
we compare the condition numbers of matrices, we must then focus on the norm of the
inverse M−1. From Lemma 2.26, the norm of the inverse of a companion matrix depends
primarily on the term − 1

a0
~u~yT −H.

By Corollary 3.8, the norm of the inverse of a Fiedler matrix should be exactly the same
as the norm of the original matrix if |a0| = 1. We wish to see when non-Fiedler cases have
smaller condition number then that of the Fiedler case when |a0| = 1. We answer this
question in a special case in the next theorem.

Theorem 4.2. Consider the monic polynomial

p(x) = xn + an−1x
n−1 + an−1x

n−2 + · · ·+ a1x+ a0

with a0 = 1, a1, . . . , an−1 ∈ R, and n = (m+ 1)k. Then there exists a striped companion ma-
trix U = C(m+1)k(k, k, . . . , k) for p(x) such that κF (U) ≤ κF (M) for any Fiedler companion
matrix M if and only if the coefficients of p(x) satisfy:

m∑
j=1

(
k−1∑
i=1

|aiajk − ajk+i|2
)
≤

m∑
j=1

(
k−1∑
i=1

|ajk+i|2
)
.
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Proof. Let U = CM+1(k, . . . , k), and let M be a Fiedler companion matrix. By definition
κF (U) ≤ κF (M) if and only if

||U || · ||U−1|| ≤ ||M || · ||M−1||.

Any sparse companion matrix to the polynomial p(x), whether it is a Fiedler companion
matrix or a striped companion matrix, will have the same norm by Theorem 3.3. It suffices
to show that ||U−1|| ≤ ||M−1|| if and only if the coefficients of p(x) satisfy:

m∑
j=1

(
k−1∑
i=1

|aiajk − ajk+i|2
)
≤

m∑
j=1

(
k−1∑
i=1

|ajk+i|2
)
.

By Lemma 4.1, there are n ones in the matrix U−1, so

||U−1||2 = n+ |a1|2 + |a2|2 + · · ·+ |ak−1|2

+ |ak|2 + |a2k|2 + · · ·+ |amk|2

+ |ak+1 − a1ak|2 + |ak+2 − a2ak|2 + · · ·+ |a2k−1 − ak−1ak|2 + · · ·
+ |a2k+1 − a1a2k|2 + |a2k+2 − a2a2k|2 + · · ·+ |a3k−1 − ak−1a2k|2

+ |amk+1 − a1amk|2 + |amk+2 − a2amk|2 + · · ·+ |am(k+1)−1 − ak−1amk|2.

By Corollary 3.8, we can similarly write out the norm of the inverse of the Fiedler matrix
M as:

||M−1||2 = n+ |a1|2 + |a2|2 + · · ·+ |ak−1|2

+ |ak|2 + |a2k|2 + · · ·+ |amk|2

+ |ak+1|2 + |ak+2|2 + · · ·+ |a2k−1|2

+ |a2k+1|2 + |a2k+2|2 + · · ·+ |a3k−1|2 + · · ·
+ |amk+1|2 + |amk+2|2 + · · ·+ |a(m+1)k−1|2.

Note that the first two rows of each equation are the same. Thus, when we compare them,
we can leave those terms out. We can write the remaining terms in ||U−1|| as

m∑
j=1

(
k−1∑
i=1

|aiajk − ajk+i|2
)

= |ak+1 − a1ak|2 + |ak+2 − a2ak|2 + · · ·+ |a2k−1 − ak−1ak|2

+ |a2k+1 − a1a2k|2 + |a2k+2 − a2a2k|2 + · · ·+ |a3k−1 − ak−1a2k|2

+ |amk+1 − a1amk|2 + |amk+2 − a2amk|2 + · · ·+ |am(k+1)−1 − ak−1amk|2.

Similarly, we can represent the remaining ||M−1||2 terms as:

m∑
j=1

(
k−1∑
i=1

|ajk+i|2
)

= |ak+1|2 + |ak+2|2 + · · ·+ |a2k−1|2

+ |a2k+1|2 + |a2k+2|2 + · · ·+ |a3k−1|2

+ |amk+1|2 + |amk+2|2 + · · ·+ |a(m+1)k−1|2.
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Therefore there can exists a striped companion matrix U that has a better condition number
than a Fiedler companion matrix of the same characteristic polynomial if and only if,

m∑
j=1

(
k−1∑
i=1

|aiajk − ajk+i|2
)
≤

m∑
j=1

(
k−1∑
i=1

|ajk+i|2
)
.

Corollary 4.3. Suppose that we have a monic polynomial

p(x) = xn + an−1x
n−1 + an−1x

n−2 + · · ·+ a1x+ a0

with a0 = 1, a1, . . . , an−1 ∈ R, and n = m(k + 1). If the coefficients of p(x) satisfy

|a1ak − ak+1| ≤ |ak+1| |a2ak − ak+2| ≤ |ak+2| . . . |ak−1ak − a2k−1| ≤ |a2k−1|
|a1a2k − a2k+1| ≤ |a2k+1| |a2a2k − a2k+2| ≤ |a2k+2| . . . |ak−1a2k − a3k−1| ≤ |a3k−1|
|a1a3k − a3k+1| ≤ |a3k+1| |a2a3k − a3k+2| ≤ |a3k+2| . . . |ak−1a3k − a4k−1| ≤ |a4k−1|

...
...

...

|a1amk − amk+1| ≤ |amk+1| |a2amk − amk+2| ≤ |amk+2| . . . |ak−1amk − a(m+1)k−1| ≤ |a(m+1)k−1|,

then there exists a non-Fiedler striped companion matrix U = Cn(k, . . . , k), such that κF (U) ≤
κF (M) for any Fiedler companion matrix M .

Proof. The hypotheses of the corollary implies that |aiajk − ajk+i| ≤ |ajk+i|, for 1 ≤ j ≤ m
and 1 ≤ i ≤ k − 1. We then apply Theorem 4.2, to finish the proof.

Example 4.4. Consider the following characteristic polynomial:

p(x) = x9 + 4x8 + 6x7 + 2x6 + 5x5 + 5x4 + 3x3 + 3x2 + 2x+ 1.

We can find a striped companion matrix and a Fiedler companion matrix for this polynomial,
for example,

U =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−2 −6 −4 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
−3 −5 −5 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
−1 −2 −3 0 0 0 0 0 0


and M =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 −4 1 0 0 0 0 0
0 0 −6 0 1 0 0 0 0
0 0 −2 0 0 1 0 0 0
0 0 −5 0 0 0 1 0 0
0 0 −5 0 0 0 0 1 0
0 0 −3 0 0 0 0 0 1
−1 −2 −3 0 0 0 0 0 0


.
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The two corresponding inverse matrices are:

U−1 =



−2 −3 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
2 −2 1 0 0 0 0 0 −2
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
−1 −4 0 0 0 1 0 0 −3

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


and

M−1 =



−2 −3 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 4 1 0 0 0 0 0 0
0 6 0 1 0 0 0 0 0
0 2 0 0 1 0 0 0 0
0 5 0 0 0 1 0 0 0
0 5 0 0 0 0 1 0 0
0 3 0 0 0 0 0 1 0


.

From Corollary 4.3 we consider the following inequalities:

|a1a6 − a7| ≤ |a7| |a2a6 − a8| ≤|a8|
|a1a3 − a4| ≤ |a4| |a2a3 − a5| ≤|a5| .

In our case, all these inequalities are satisfied since

(a0, a1, a2, a3, a4, a5, a6, a7, a8) = (1, 2, 3, 3, 5, 5, 2, 6, 4).

Thus Corollary 4.3 implies that κF (U) ≤ κF (M). Indeed,

κF (U) = ||U || · ||U−1|| =
√

137 ·
√

60 ≈ 91 and

κF (M) = ||M || · ||M−1|| =
√

137 ·
√

137 = 137.

Example 4.5. Consider the following characteristic polynomial:

p(x) = x9 + 6x8 + 4x7 + 2x6 + 9x5 + 6x4 + 3x3 + 3x2 + 2x+ 1.
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We can find a striped and a Fiedler companion matrix for this polynomial, e.g.,

U =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−2 −4 −6 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
−3 −6 −9 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
−1 −2 −3 0 0 0 0 0 0


and M =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 −6 1 0 0 0 0 0
0 0 −4 0 1 0 0 0 0
0 0 −2 0 0 1 0 0 0
0 0 −9 0 0 0 1 0 0
0 0 −6 0 0 0 0 1 0
0 0 −3 0 0 0 0 0 1
−1 −2 −3 0 0 0 0 0 0


We see that for this example, when we construct the striped companion matrix U =
C9(3, 3, 3), the submatrix R from Theorem 2.13 has rank 1. We now find the inverses of
both matrices:

U−1 =



−2 −3 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −2
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 −3
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


and

M−1 =



−2 −3 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 6 1 0 0 0 0 0 0
0 4 0 1 0 0 0 0 0
0 2 0 0 1 0 0 0 0
0 9 0 0 0 1 0 0 0
0 6 0 0 0 0 1 0 0
0 3 0 0 0 0 0 1 0


.

Then by Corollary 4.3 we consider the following inequalities. Notice that we have extreme
cases on the left hand sides of our inequalities:

|a1a6 − a7| = 0 ≤ |a7| |a2a6 − a8| = 0 ≤ |a8|
|a1a3 − a4| = 0 ≤ |a4| |a2a3 − a5| = 0 ≤ |a5|

where (a0, a1, a2, a3, a4, a5, a6, a7, a8) = (1, 2, 3, 3, 6, 9, 2, 4, 6).

So these inequalities are satisfied, since all the left hand sides are zero. In the following,
we will see that this extreme case happens whenever a striped lower Hessenberg companion
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matrix of the form in Theorem 2.13 has a submatrix R of rank 1. Theorem 4.10 generalizes
this result further. When we compute the condition numbers of both matrices we get the
following

κF (U) = ||U || · ||U−1|| =
√

204 ·
√

35 ≈ 85; and,

κF (M) = ||M || · ||M−1|| =
√

204 ·
√

204 = 204.

In this case the ratio
κF (M)

κF (U)
≈ 204

85
= 2.4. This suggests we can make the ratio

κF (M)

κF (U)
quite large.

Example 4.6. Let’s consider the striped matrix C6(2, 2, 2)

C6(2, 2, 2) =


0 1 0 0 0 0

−a4 −a5 1 0 0 0
0 0 0 1 0 0

−a2 −a3 0 0 1 0
0 0 0 0 0 1
−1 −a1 0 0 0 0

 ,

for a1, . . . , a5 ∈ R. When the following inequalites hold

|a1a2 − a3| ≤ a3

|a1a3 − a4| ≤ a4

|a1a4 − a5| ≤ a5 ,

we know that the striped companion matrix will have a condition number equal to or better
than any Fiedler companion matrix. When the rank of the submatrix

−a4 −a5
0 0

−a2 −a3
0 0
−1 −a1


is 1, the inequalities above become

|a1a2 − a3| = 0 ≤ a3

|a1a3 − a4| = 0 ≤ a4

|a1a4 − a5| = 0 ≤ a5.
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We can use this fact to demonstrate an interesting example. Consider when (a0, a1, a2, a3, a4, a5) =
(1, k, ck, ck2, ck2, ck3). Then

C6(2, 2, 2) = U =


0 1 0 0 0 0

−ck2 −ck3 1 0 0 0
0 0 0 1 0 0

−ck −ck2 0 0 1 0
0 0 0 0 0 1
−1 −k 0 0 0 0

 and U−1 =


−k 0 0 0 0 −1
1 0 0 0 0 0

ck3 − ck3 1 0 0 0 −ck2
0 0 1 0 0 0

ck − ck 0 0 1 0 −ck
0 0 0 0 1 0

 .

Thus

||U−1||2 = c2k4 + c2k2 + k2 + 6.

But for any 6× 6 Fiedler companion matrix M with a0 = 1, we have

||M−1||2 = a21 + a22 + a23 + a24 + a25 + 6 (by Corollary 3.8)

= c2k6 + c2k4 + c2k4 + c2k2 + k2 + 6.

When we consider the ratio of the two condition numbers we get

||M−1||2

||U−1||2
=
c2k6 + c2k4 + c2k4 + c2k2 + k2 + 6

c2k4 + c2k2 + k2 + 6
≈ k2

for sufficiently large k. Since we used the condition numbers squared for simplicity,

κ(M)

κ(U)
≈ k.

The next theorem generalizes this example.

Theorem 4.7. Suppose that we have a monic polynomial p(x) = q(x)+c1x
kq(x)+c2x

2kq(x)+
· · ·+ cmx

mkq(x) + x(m+1)k over R, with

q(x) = ak−1x
k−1 + ak−2x

k−2 + · · ·+ a1x+ 1

and n = (m+ 1)k. Let U be the striped companion matrix in lower Hessenberg form to p(x)
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given by:

U = Cn(k, k, . . . , k) =



~0 Ik−1 0

−cm −cma1 . . . −cmak−1
0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−ci −cia1 . . . −ciak−1
0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−c2 −c2a1 . . . −c2ak−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−c1 −c1a1 . . . −c1ak−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−1 −a1 . . . −ak−1

In−k−1

~0T



.

For any Fiedler companion matrix M to p(x), we have that[
κF (M)

κF (U)

]2
=

(1 + c21 + · · ·+ c2m)(a21 + · · ·+ a2k−1) + (c21 + · · ·+ c2m) + n

(a21 + · · ·+ a2k−1) + (c21 + · · ·+ c2m) + n
.
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Proof. Note that, by Lemma 2.26

U−1 =



−a1 −a2 . . . −ak−1
~0T −1

Ik 0 ~0

cma1 − cma1 cma2 − cma2 . . . cmak−1 − cmak−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
cia1 − cia1 cia2 − cia2 . . . ciak−1 − ciak−1

...
... . . .

...
0 0 . . . 0

c2a1 − c2a1 c2a2 − c2a2 . . . c2ak−1 − c2ak−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
c1a1 − c1a1 c1a2 − c1a2 . . . c1ak−1 − c1ak−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

In−k−1

−cm
0
...
0
−ci
...
0
−c2
0
...
0
−c1
0
...
0



.

All the terms in the bottom left submatrix are zero, which leaves us with

U−1 =



−a1 −a2 . . . −ak−1 ~0T −1

Ik 0 ~0

0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0

In−k−1

−cm
0
...
0
−ci

...
0
−c2

0
...
0
−c1

0
...
0


So computing the norm squared of the inverse, we get

||U−1||2 = a21 + · · ·+ a2k−1 + c21 + · · ·+ c2m + n.
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From Corollary 3.8

||M−1||2 = a21 + · · ·+ a2k−1+

c21 + c21a
2
1 + · · ·+ c21a

2
k−1+

c22 + c22a
2
1 + · · ·+ c22a

2
k−1+

...

c2m + c2ma
2
1 + · · ·+ c2ma

2
k−1 + n

= c21 + · · ·+ c2m+

1(a21 + · · ·+ a2k−1)+

c21(a
2
1 + · · ·+ a2k−1)+

c22(a
2
1 + · · ·+ a2k−1)+

...

c2m(a21 + · · ·+ a2k−1) + n

= (1 + c21 + · · ·+ c2m)(a21 + · · ·+ a2k−1) + (c21 + · · ·+ c2m) + n.

And so,[
κ(M)

κ(U)

]2
=
||M−1||2

||U−1||2
=

(1 + c21 + · · ·+ c2m)(a21 + · · ·+ a2k−1) + (c21 + · · ·+ c2m) + n

(a21 + · · ·+ a2k−1) + (c21 + · · ·+ c2m) + n
.

Corollary 4.8. Suppose that we have a monic polynomial p(x) = q(x)+c1x
kq(x)+c2x

2kq(x)+
· · ·+ cmx

mkq(x) + x(m+1)k over R, with

q(x) = ak−1x
k−1 + ak−2x

k−2 + · · ·+ a1x+ 1

and n = (m + 1)k. Let U = Cn(k, k, . . . , k) be the striped companion matrix in lower
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Hessenberg form to p(x) as given below:

U =



~0 Ik−1 0

−cm −cma1 . . . −cmak−1
0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−ci −cia1 . . . −ciak−1
0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−c2 −c2a1 . . . −c2ak−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−c1 −c1a1 . . . −c1ak−1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−1 −a1 . . . −ak−1

In−k−1

~0T



.

If (1 + c21 + · · ·+ c2m) is sufficiently large, then for any Fiedler companion matrix M to p(x),
it is the case that [

κ(M)

κ(U)

]2
=
||M−1||2

||U−1||2
≈ (a21 + · · ·+ a2k−1 + 1).

Proof. By Theorem 4.7[
κ(M)

κ(U)

]2
=
||M−1||2

||U−1||2
=

(1 + c21 + · · ·+ c2m)(a21 + · · ·+ a2k−1) + (c21 + · · ·+ c2m) + n

(a21 + · · ·+ a2k−1) + (c21 + · · ·+ c2m) + n
.

Let C = (c21 + · · ·+ c2m), and let A = (a21 + · · ·+ a2k−1). Then

lim
C→∞

[
κ(M)

κ(U)

]2
= lim

C→∞

(C + 1)A+ C + n

A+ C + n
.

If we divided all the terms in the denominator and the numerator by (C+1) we are left with

lim
C→∞

A+ C
C+1

+ n
C+1

A
C+1

+ 1 + n
C+1

=
A+ 1 + 0

0 + 1 + 0
= a21 + · · ·+ a2k−1 + 1.
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The previous result shows that the ratio of the condition numbers of the companion
matrices can be arbitrarily large when we fix the rank of the striped R-submatrix from
Theorem 2.13 to be 1. The rank 1 condition is not a requirement for a striped companion
matrix to have a lower condition number in general. In Example 4.5 we did not have an
R-submatrix with rank 1, but we were able to create a striped companion matrix that had
better condition number than the Fiedler matrices. Example 4.6 demonstrates how large we
can make the ratio.

4.2 Striped Companion Matrices with Different Sized

Stripes

So far in this chapter, we have considered only striped companion matrices that have
all the same sized stripes. We wish to consider also when the stripes are not all the same
size. Recall the structure of any companion matrix A in lower Hessenberg form to some
characteristic polynomial p(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0 from Lemma 2.26

A =


~0 Im 0

~u H In−m−1

−a0 ~yT ~0T

 . (4.2)

Consider now some striped companion matrix U = Cn(s) where s = (s1, s2, . . . , sr), sr ≤
si ≤ s1 for i ∈ {2, . . . , r − 1}. Then the bottom stripe will fall completely in the row vector
~yT , except the −a0 entry, followed by s1 − sr zeros. The ~u column vector of the striped
companion matrix U will have the first entry of each nonzero stripe according to (4.2), and
zeros elsewhere corresponding to the zero stripes of U . If s = (s1, s2, . . . , sr), then there will
be r nonzero entries in the column vector ~u of U which we will call a`j for j ∈ {1, . . . , r− 1}
since a`r = −a0. With this notation, we consider the following theorem.

Theorem 4.9. Consider the monic polynomial:

p(x) = xn + an−1x
n−1 + an−1x

n−2 + · · ·+ a1x+ 1,

where n is any positive integer, and a1, . . . , an−1 ∈ R. Consider any striped companion
matrix U = Cn(s) where s = (s1, s2, . . . , sr), sr < si ≤ s1 for all i ∈ {2, . . . , r − 1}. Assume
that each nonzero stripe has a nonzero entry in ~u, and let a`j for j ∈ {1, . . . , r − 1} be the
the nonzero coefficients of the polynomial p(x) that fall in the column vector ~u of the matrix
U . If M is any lower Hessenberg Fiedler companion matrix to the polynomial p(x), then
κF (U) ≤ κF (M) if the entries of U satisfy:

|aka`j − ak+`j | ≤ |ak+`j | for k ∈ {1, . . . , t}

Proof. By definition, κF (U) ≤ κF (M) if and only if

||U || · ||U−1|| ≤ ||M || · ||M−1||.
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Let sr = t. It suffices to show that ||U−1||2 ≤ ||M−1||2 if the entries of U satisfy:

|aka`j − a`j+k| ≤ |a`j+k|

for k ∈ {1, . . . , t}, and j ∈ {1, . . . , r − 1}. U can be represtend as follows: ~0 Im 0

R
In−m−1
~0T

 ,
where

R =



−a`1 −a`1+1 . . . −a`1+t F . . . F . . . −an−1
0 0 . . . 0 0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0 . . . 0
−a`r−j −a`r−j+1 . . . −a`r−j+t F . . . F . . . F

...
...

...
...

...
...

...
...

...
0 0 . . . 0 0 . . . 0 . . . 0

−a`r−2 −a`r−2+1 . . . −a`r−2+t F . . . F . . . F
0 0 . . . 0 0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0 . . . 0
−a`r−1 −a`r−1+1 . . . −a`r−1+t F . . . F . . . F

0 0 . . . 0 0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0 . . . 0
−1 −a1 . . . −at 0 . . . 0 . . . 0



,

where Fs are either coefficients or zeros that fall outside of the (n− t)× (t+ 1) submatrix
in the bottom left corner of U . Note from Lemma 2.26 that, since a0 = 1,
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U−1 =



−a1 −a2 . . . −at ~0T −1

It 0 ~0

a1a`1 − a`1+1 a2a`1 − a`1+2 . . . ata`1 − a`1+t

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
a1a`r−j

− a`r−j+1 a2a`r−j
− a`r−j+2 . . . ata`r−j

− a`r−j+t

...
... . . .

...
...

... . . .
...

0 0 . . . 0
a1a`r−2

− a`r−2+1 a2a`r−2
− a`r−2+2 . . . ata`r−2

− a`r−2+t

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
a1a`r−1 − a`r−1+1 a2a`r−1 − a`r−1+2 . . . ata`r−1 − a`r−1+t

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

W

−a`1
0
...
0

−a`r−j

...

...
0

−a`r−2

0
...
0

−a`r−1

0
...
0



.

Since the Fs fall outside the first (t+ 1) columns of U , when we take the inverse of U , all of
the nonzero Fs will be monomial elements in U−1, represented by the nonzero elements of W .
Note that when we compare condition numbers of the striped and Fiedler companion matrices
all of the elements of ∗ in U−1 will cancel out with some ai in M−1 for i ∈ {1, . . . n− 1}. By
Corollary 3.8, when a0 = 1, then

||M−1||2F =
n−1∑
i=1

|ai|2 + n

for any Fiedler companion matrix M to p(x). From Lemma 2.26, both U−1 and M−1 will
have n ones (as a0 = 1). And from our hypothesis we have that

|aka`j − a`j+k| ≤ |a`j+k|

for k ∈ {1, . . . , t}, and j ∈ {1, . . . , r − 1}. Thus, ||U−1||2 ≤ ||M−1||2.

Theorem 4.10. Consider the monic polynomial:

p(x) = xn + an−1x
n−1 + an−1x

n−2 + · · ·+ a1x+ a0

where a0 = 1, and a1, . . . , an−1 ∈ R. Let U be a striped companion matrix to the polynomial
p(x). If

U =

 ~0 Im 0

R
In−m−1
~0T
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with R a submatrix, defined in Theorem 2.13, of the form

R =

[
B

∗

0 · · · 0

]
,

and B is given by

B =



−a`1 −a`1+1 . . . −a`1+t
0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−a`r−j −a`r−j+1 . . . −a`r−j+t

...
... . . .

...
0 0 . . . 0

−a`r−2 −a`r−2+1 . . . −a`r−2+t

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−a`r−1 −a`r−1+1 . . . −a`r−1+t

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
−1 −a1 . . . −at



,

then
r−1∑
j=1

(
t∑
i=1

|aia`j − a`j+i|2)

)
= 0 ⇔ rank(B) = 1.

Proof. Let

B′ =


−a`1 −a`1+1 . . . −a`1+t
−a`r−j −a`r−j+1 . . . −a`r−j+t
−a`r−2 −a`r−2+1 . . . −a`r−2+t

−a`r−1 −a`r−1+1 . . . −a`r−1+t

−1 −a1 . . . −at

 .
be the matrix consisting of the nonzero rows of B. (⇒) Note that for 1 ≤ i ≤ t, and
1 ≤ j ≤ r− 1,

∑r−1
j=1(

∑t
i=1 |aia`j − a`j+i|2) = 0 if and only if |aia`j − a`j+i| = 0 if and only if

for all the 2× 2 submatrices of B′ involving the first column, and the last row of B′ have a
determinant of zero, i.e.:

det

[
−a`j −a`j+i
−1 −ai

]
= 0, for i ∈ {1, . . . , t}, and j ∈ {1, . . . , r − 1}.
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We choose one column and one row, and consider the corners of that square. First consider
just the bottom two rows of B′.

B′′ =

[
−a`r−1 −a`r−1+1 . . . −a`r−1+t

−1 −a1 . . . −at

]
.

If the 2×2 submatrices of B′′ involving the first column have determinant 0, that is equivalent
to saying that each column of B′′ is a scalar multiple of [−a`r−1 − 1]T . So rank(B′′) = 1,
which is true if and only if row 2 is a multiple of row 1. We can do the same process for every
row of B′ in fact. And so every row of B′ is a multiple of the bottom row, which implies
that rank(B′) = 1 which implies rank(B) = 1.

(⇐) If the rank of B is q, that is equivalent to saying that the largest square submatrix of B
with nonzero determinant is a q× q matrix [8]. So if q = 1, then every 2× 2 submatrix of B
has a zero determinant, which means that |aia`j−a`j+i| = 0 for 1 ≤ i ≤ t, and 1 ≤ j ≤ r−1.

This implies that
∑r−1

j=1(
∑t

i=1 |aia`j − a`j+i|2) = 0.

In this chapter we saw that under the right hypotheses striped companion matrices
can have a smaller condition number to any Fiedler companion matrix. Striped companion
matrices are the main class of companion matrices we studied in this paper, but these results
give hope to potentially generalizing some of these results to compare the condition number
of any sparse companion matrix to the Fiedler companion matrices.
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Chapter 5

Singular Values of Companion
Matrices

In this chapter, we change gears to discussing some of the results about singular values
and the spectral condition number previously studied by De Téran et. al. in 2012 [1]. The
spectral condition number uses the spectral norm, which uses eigenvalues to evaluate the
size of a matrix. We will discuss in more detail through this chapter how to find the singular
values of a matrix, and how the singular values will help in the calculation of the spectral
condition number of a matrix.

Definition 5.1. Let A be an m×n matrix. The conjugate transpose of the matrix A, denoted
A∗, is obtained by taking the complex conjugate of each entry of A, and then transposing
the matrix. That is,

A∗ = ĀT .

Note that for this project we work primarily in the real numbers R. This fact implies
that the conjugate transpose is merely the transpose, i.e., A∗ = ĀT = AT .

Definition 5.2. A matrix A is called unitary if its conjugate transpose is also its inverse.
That is,

ATA = AAT = I.

Note that ATA is a symmetric matrix. Thus the eigenvalues of ATA are real numbers.
Since ~vT~v ≥ 0 for any real vector ~v, setting ~v = A~x gives ~xTATA~x ≥ 0. If λ is an eigenvalue
of ATA then ATA~x = λ~x for a real nonzero vector ~x and hence λ~vT~v = ~xTATA~x ≥ 0. Thus
the eigenvalues of ATA are nonnegative real numbers.

Definition 5.3. The singular values of a matrix A are the square roots of the eigenvalues
of ATA.

Definition 5.4. [5] The spectral norm is defined as the square root of the maximum eigen-
value of ATA. That is,

||A||2 =
√

max{λ | λ is an eigenvalue of ATA}.

Thus the spectral norm of A is the largest singular value of A.
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We can show that the spectral norm of any matrix A is in fact a matrix norm. 0

• ||A||2 = 0 if and only if A = 0 is true since a zero matrix can only have 0 eigenvalues.

• Next we wish to show that ||kA||2 = |k| · ||A||2. Suppose that λmax is the largest
eigenvalue of A. Note that if ~x is an eigenvector of A then A~x = λ~x and kA~x = kλ~x,
and hence, (kλ) is an eigenvector of (kA). So

||kA||2 =
√

max{λ | λ is an eigenvalue of (kA)T (kA)}
=
√
k2 ·max{λ | λ is an eigenvalue of ATA}

= |k| ·
√

max{λ | λ is an eigenvalue of ATA}.

And so ||kA||2 = |k| · ||A||2.

• ||A+B||2 ≤ ||A||2 + ||B||2 follow from Weyl’s Theorem (see [5, Theorem 4.3.1]).

Definition 5.5. The spectral condition number of a matrix A, denoted κ2(A), is κ2(A) =
||A||2 · ||A−1||2.

Example 5.6. Consider the n × n matrix given by [hij] =
1

(i+ j − 1)
, called a Hilbert

matrix. For example, when n = 4

H4 =


1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

 .
When one calculates the spectral condition number κ2(H4), we see that even for a small n,
the condition number can be quite large since κ2(H4) ≈ 15, 500.

Lemma 5.7. [6] Let A be an n × n invertible matrix. Suppose also that s1 and s2 are the
maximum and minimum singular values of A respectively. Then

κ2(A) =
s1
s2
.

Proof. By the definition of the spectral norm, ||A||2 = s1. For this proof we need the
following statement: If A is invertible, then

λ is an eigenvalue of A ⇔ λ−1 is an eigenvalue of A−1.

This is true since for invertible matrices A,

A~x = λ~x

⇔ A−1(A~x) = λA−1~x

⇔ λ−1(A−1A)~x = (λ−1λ)A−1~x

⇔ λ−1~x = A−1~x.
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Now consider

||A−1||22 = max{λ | λ is an eigenvalue of (A−1)TA−1}

= max{λ | λ is an eigenvalue of (AAT )−1} = max{1

λ
| 1

λ
is an eigenvalue of (AAT )}

=
1

min{λ | λ is an eigenvalue of (AAT )}
=

1

s2
.

And so we have
κ2(A) = ||A||2||A−1||2 =

s1
s2
.

The next theorem exhibits a relation between κ2(A) and κF (A).

Theorem 5.8. [10] For any n× n matrix A,

||A||2 ≤ ||A||F ≤
√
n · ||A||2.

Consequently
κ2(A) ≤ κF (A) ≤ n · κ2(A). (5.1)

Proof. Recall that the trace of a matrix A = [aij] is given by

tr(A) =
n∑
i=1

aii,

and also that tr(A) is the sum of the eigenvalues of A. Suppose then, that the eigenvalues
of ATA are

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Then

||A||2 =
√
λ1 ≤

√√√√ n∑
i=1

λi =
√

tr(ATA) = ||A||F ,

and

||A||F =

√√√√ n∑
i=1

λi ≤
√
nλ1 =

√
n
√
λ1 =

√
n||A||2.

The proof for (5.1) is similar.

The next goal is to describe some ideas from linear algebra to help us factor companion
matrices. Theorem 5.16 will allow us to see how these factored matrices are going to aid us
in the calculation of the singular values of a sparse companion matrix.
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Lemma 5.9. [8, Theorem 3.29] Let V be a vector space of dimension n over a R, and let

B = {~b1, ~b2, . . . , ~bn}
be an ordered basis for V . Then for every v ∈ V , there is a unique linear combination of the
basis vectors that equals v, that is, there exists unique α1, . . . , αn ∈ R, such that

v = α1
~b1 + · · ·+ αn ~bn.

Definition 5.10. The coordinate vector of v relative to an ordered basis B is the ordered
tuple of coefficients corresponding to each v, that is,

[v]B = (α1, . . . , αn).

Lemma 5.11. [7] Let B be an m × n matrix with rank r. Then there exists a matrix
L ∈ Rm×r and a matrix R ∈ Rr×n such that B = LR.

Proof. Let

B =


~b1
~b2
...
~bn


where {~b1, . . . ,~bn} are the row vectors of B. If r = rank(B), then there exists r row vectors

β = { ~bi1 , . . . , ~bir} that form a basis for the row space of B. We can represent each row of B
with a list of coefficients corresponding to the linear combination it represents over the whole
field. Applying Lemma 5.10, for each i = 1, . . . , n, let [~bi]β = (ci1, . . . , c

i
r) be the coordinates

of ~bi with respect to the ordered basis β. With this notation we can simply choose

L =


[~b1]β
[~b2]β

...

[~bn]β

 and R =


~bi1
~bi2
...
~bir

 , then LR = B.

This next result is a generalization of [1, Lemma 6.4].

Lemma 5.12. Let p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be a polynomial over R. Suppose

A is an n× n sparse companion matrix to p(x) in lower Hessenberg form. Let

U =



0 1 0 0 . . . 0 0 0
0 0 1 0 . . . 0 0 0
0 0 0 1 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 1 0 0
0 0 0 0 . . . 0 1 0
0 0 0 0 . . . 0 0 1
1 0 0 0 . . . 0 0 0


.
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Then there exists a matrix L ∈ Rn×r, and a matrix R ∈ Rr×n where r is the rank of the
matrix A− U , such that A = U + LR where

Proof. The result follows by applying Lemma 5.11 to the matrix A− U .

Example 5.13. Consider the 9× 9 companion matrix

A =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 −a7 −a8 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 −a5 −a6 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 −a3 −a4 0 0 0 0 1
−a0 −a1 −a2 0 0 0 0 0 0


.

Then

A− U =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −a7 −a8 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −a5 −a6 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −a3 −a4 0 0 0 0 0

−a0 − 1 −a1 −a2 0 0 0 0 0 0


.

Our task is to decompose the matrix A − U into a product LR. Using row reductions, we
can show A−U has rank at most 3. Without loss of generality, let the fourth row of A−U
be dependent upon the rows 6 and 8, and we suppose that rank(A−U) = 3. Then the rows
of

R =

 0 0 −a5 −a6 0 0 0 0 0
0 0 −a3 −a4 0 0 0 0 0

−a0 − 1 −a1 −a2 0 0 0 0 0 0


are a basis for the row space of A−U . Next, since the fourth row is a linear combination of the
sixth and eighth, there exists coefficients s and t such that a7 = sa5 + ta3 and a8 = sa6 + ta4.
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Let

L =



0 0 0
0 0 0
0 0 0
s t 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1


.

Then

0 0 0
0 0 0
0 0 0
s t 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1



 0 0 −a5 −a6 0 0 0 0 0
0 0 −a3 −a4 0 0 0 0 0

−a0 − 1 −a1 −a2 0 0 0 0 0 0

 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −a7 −a8 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −a5 −a6 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −a3 −a4 0 0 0 0 0

−a0 − 1 −a1 −a2 0 0 0 0 0 0


.

Example 5.14. Consider the 9× 9 companion matrix

A =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−a6 −a7 −a8 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
−a3 −a4 −a5 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
−a0 −a1 −a2 0 0 0 0 0 0


.

The matrix A− U also has rank at most 3. Suppose A− U has rank 3. Let

L =



0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1


and R =

 −a6 −a7 −a8 0 0 0 0 0 0
−a3 −a4 −a5 0 0 0 0 0 0
−a0 − 1 −a1 −a2 0 0 0 0 0 0

 .

Then LR = A− U .
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Theorem 5.15. [5, Theorem 1.3.20] Let A ∈ Rm×n and B ∈ Rn×m with m ≤ n. Then BA
has the same eigenvalues of AB, counting multiplicity, together with and additional n −m
eigenvalues equal to 0; that is pBA(x) = xn−mpAB(x). If m = n and at least one of A or B
is nonsingular, then AB and BA are similar matrices.

With this theorem we can state and prove the following result from De Terán et. al [1].

Theorem 5.16. [1, Lemma 6.3] Let A = U + LR ∈ Rn×n, where U ∈ Rn×n is a unitary
matrix, L ∈ Rn×r, and R ∈ Rr×n. If 2r < n, then A has at least n− 2r singular values equal
to 1, and the other 2r singular values are the square roots of the eigenvalues of the matrix

H = I +

[
R
LTU

] [
UTL+RTLTL RT

]
.

Proof. The singular values of A are the square roots of the eigenvalues of ATA. So we first
compute ATA. We have

ATA =(U + LR)T (U + LR) = UTU +RTLTU + UTLR +RTLTLR

=I + [UTL+RTLTL RT ]

[
R
LTU

]
= I + L̃R̃.

Since L̃ ∈ Rn×2r and R̃ ∈ R2r×n, then rank(L̃R̃) ≤ 2r. We have that L̃R̃ ∈ Rn×n, so by
Theorem 5.15, its eigenvalues are the same as the eigenvalues of R̃L̃ ∈ R2r×2r, plus n − 2r
eigenvalues equal to 0 . So the eigenvalues of I+R̃L̃ ∈ R2r×2r together with n−2r eigenvalues
equal to 1 are the eigenvalues of H = I + L̃R̃ ∈ Rn×n, which are the squares of the singular
values of A.

Example 5.17. Consider the following companion matrix to the polynomial x6 − 6x5 −
3x4 − 4x3 − 2x2 − 2x− 2:

M =


0 1 0 0 0 0
3 6 1 0 0 0
0 0 0 1 0 0
2 4 0 0 1 0
0 0 0 0 0 1
2 2 0 0 0 0

 .
Setting

L =


0
3
0
2
0
1

 and R =
[

1 2 0 0 0 0
]
,

we decompose this matrix into
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M = U + LR

=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

+


0 0 0 0 0 0
3 6 0 0 0 0
0 0 0 0 0 0
2 4 0 0 0 0
0 0 0 0 0 0
1 2 0 0 0 0



=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

+


0
3
0
2
0
1


[

1 2 0 0 0 0
]
.

Next we compute the matrix H from Lemma 5.16:

H = I +

[
R
LTU

] [
UTL+RTLTL RT

]

= I +

[
1 2 0 0 0 0
1 0 3 0 2 0

]


15 1
28 2
3 0
0 0
2 0
0 0

 =

[
72 5
28 2

]
.

The eigenvalues of H are

λ1 = 37 +
√

1365 , λ2 = 37−
√

1365,

which implies that the singular values of M are

s1 =

√
37 +

√
1365 , s2 =

√
37−

√
1365,

and the other four singular values of the matrix are 1’s according to Theorem 5.16.

We want to find the condition number of M , which requires the maximum singular values
of M and M−1. Now

M−1 = Ũ + L̃R̃
−1 0 0 0 0 1

2

1 0 0 0 0 0
−3 1 0 0 0 −3

2

0 0 1 0 0 0
−2 0 0 1 0 −1

0 0 0 0 1 0

 =


0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

+


−1 0 0 0 0 −1

2

0 0 0 0 0 0
−3 0 0 0 0 −3

2

0 0 0 0 0 0
−2 0 0 0 0 −1

0 0 0 0 0 0
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The right most matrix, M−1 − Ũ has rank 1, as all the rows are scalar multiples of each
other. Thus

M−1 − Ũ =


−1

0
−3

0
−2

0


[

1 0 0 0 0 1
2

]
.

We then compute H̃:

H̃ = I +

[
R̃

L̃T Ũ

] [
ŨT L̃+ R̃T L̃T L̃ R̃T

]

H̃ = I +

[
1 0 0 0 0 1

2

0 −3 0 −2 0 −1

]


14 1
−3 0

0 0
−2 0

0 0
6 1

2

 = I +

[
17 5

4

7 −1
2

]
=

[
18 5

4

7 1
2

]
.

When we find the eigenvalues of H̃ we get

λ̃1 =
1

4
(37 +

√
1365) , λ̃2 =

1

4
(37−

√
1365),

which implies that the singular values of M−1 are

s̃1 =

√
1

4
(37 +

√
1365) , s̃2 =

√
1

4
(37−

√
1365).

Again, the other four singular values of the matrix are 1’s according to Theorem 5.16. Thus
we get that

κ2(M) = ||M ||2||M−1||2 =(

√
37 +

√
1365)(

√
1

4
(37 +

√
1365))

=
1

2
(37 +

√
1365)

≈ 36.972953.

While we used Theorem 5.16 for illustration purposes to calculate ||M−1||2, we could also
use Lemma 5.7. In particular Lemma 5.7 implies

||M−1||2 =
1

s2
and κ2(M) =

s1
s2
.

If we can find all the eigenvalues of an n× n matrix, we can find the spectral condition
number of a sparse companion matrix according to the definition. Theorem 5.16 tells us that
we can find the condition number of a sparse companion matrix by finding the eigenvalues
of a smaller 2r × 2r matrix.
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Chapter 6

Conclusion/Open Questions

Throughout the majority of this project we explored companion matrices, and the con-
ditions under which a sparse companion matrix can have a better condition number than
Fiedler companion matrices. We focused on the striped companion matrices and discovered
that under the right circumstances we could successfully do this. Given the formula of the
condition number, we consider the following question:

Question 6.1. For some striped companion matrix U = Cn(s), does there exist a general
formula for ||U ||F and ||U−1||F?

If we could find explicit formulas for these, we could easily compare the condition number
κF (U) with any Fiedler companion matrix. And with an explicit formula it might be possible
to construct an ordering for the condition number of the striped companion matrices, as De
Téran et. al. did for the Fiedler companion matrices [1]. In chapter 4 we saw that we could
also make the ratio of condition numbers for striped and Fiedler companion matrices as big
as we wanted for sufficiently large constants when each striped was linearly dependant on
one another. From this result, another natural question would be:

Question 6.2. What other striped companion matrices Cn(s) can we have the property that
κ(C) < κ(M) for every Fiedler matrix M , other than when the striped matrix has all linearly
dependent stripes.

As previously noted, this project compared the condition numbers of the Fiedler com-
panion matrices with striped companion matrices. In future work, the next step would
be to explore other classes of sparse companion matrices that we can compare to Fiedler
companion matrices. The ultimate goal is to answer the following question:

Question 6.3. Given a polynomial p(x), can we determine which sparse companion matrices
to p(x) yield the smallest condition numbers
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Chapter 7

Appendix

Algorithm 7.1. [3, Algorithm 2.10] This algorithm finds a matrix P to transform M into
a lower Hessenberg form. In particular, the matrix P has the property that PMP T is in
lower Hessenberg form if M is a sparse companion matrix.

P = nxn matrix

j = 0;

for i in range(n):

for k in range(n):

if A[k,i]==-an:

j=i;

break

P[j,0] = 1;

for r in range(1,n):

for s in range(n):

if A[j,s]==1:

j=s;

break

P[s,r] = 1;

return P;
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