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ABSTRACT i

Abstract

The minimal free resolutions of sub-varieties of a toric variety are often larger
than is necessary for their geometric applications. Virtual resolutions were defined
by Berkesch, Erman, and Smith in the context of toric varieties in [2], and are of-
ten given by shorter and thinner complexes than minimal free resolutions. Rather
than looking at an exact sequence of free modules resolving an ideal, one considers
a complex of free modules which when sheaffified gives a resolution of the associated
sheaves.

This project aims to give an introduction to resolutions, both minimal and vir-
tual, and to give an algebraic condition on a complex to guarantee it is a virtual
resolution.
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CHAPTER 1

Introduction

A free resolution of an R−module M is an exact sequence of free R−modules
whose 0−th homology is isomorphic to M . Resolutions naturally arises in algebraic
geometry because there is a correspondence between closed sub-varieties of projective
space Pn over an algebraically closed field K, and proper radical homogeneous ideals
in R = K[x0, . . . , xn]. To every radical homogeneous ideal there is an associated
minimal free resolution and the minimal free resolution gives geometric information
about the associated variety (for instance its dimension). Chapter 2 focuses on the
algebraic background of minimal free resolutions used in the studying of sub-varieties
of Pn.

A natural next step would be to consider products of projective spaces. In order
to study sub-varieties of a product of projective spaces algebraically, we first need
to find the appropriate polynomial ring whose radical ideals correspond to the sub-
varieties. A product of projective spaces is an example of a toric variety. In Chapter
3 we closely follow [5] to define a toric variety and show how to construct one from
a fan of cones. Given a cone σ, one considers its dual cone σ̂ which gives an affine
semi-group Sσ, which in turn gives a toric variety Uσ = Spec(K[Sσ]).

The structure of the fan Σ gives the necessary information to glue together the
toric varieties Uσ into an abstract toric variety which we denote XΣ. The fan also
gives the necessary information to construct the total coordinate ring SΣ. Further-
more there is a correspondence between certain radical homogeneous ideals of SΣ and
the sub-varieties of XΣ. In general, SΣ is graded by the class group Cl(XΣ). In the
case of a product of projective spaces, the class group is Zr where r is the number of
projective spaces appearing in the product.

We can then use the algebraic techniques discussed in Chapter 2 to study the ho-
mogeneous radical ideals of SΣ (adapting the definitions of a minimal free resolution
to the multi-graded case), however this usually leads to complexes which are larger
than is necessary. In Chapter 4 we give the definition of a virtual resolution, first
introduced by Berkesch et al. in [2]. This is a new definition and not very much
is known about virtual resolutions. However, in Section 5 of [2], several geometric
applications of virtual resolutions are given. Instead of considering an exact sequence
of free modules, we consider a complex which when sheaffified gives an exact sequence
of sheaves.
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2 1. INTRODUCTION

Example 1.4 in [2] demonstrates how minimal free resolutions are often much
larger than virtual resolutions. A hyperelliptic curve curve of genus 4 can be em-
bedded into P1 × P2. Letting I be the corresponding ideal, S/I has minimal free
resolution

S ←

S(−3,−1)
⊕

S(−2,−2)
⊕

S(−2,−3)2

⊕
S(−1,−5)3

⊕
S(0,−8)

←

S(−3,−3)3

⊕
S(−2,−5)6

⊕
S(−1,−7)
⊕

S(−1,−8)2

←

S(−3,−5)3

⊕
S(−2,−7)2

⊕
S(−2,−8)

← S(−3,−7)← 0.

However S/I has a virtual resolution

S ←

S(−3,−1)
⊕

S(−2,−2)
⊕

S(−2,−3)2

← S(−3,−3)3 ← 0,

which is both shorter and thinner than the minimal free resolution.

Every minimal free resolution is a virtual resolution. However the sequence of
sheaves being exact is less strict of a condition than the sequence of free modules
being exact. In Section 2 of Chapter 4 we show that the sequence of sheaves being
exact corresponds to the sequence of modules having limited homology. Our main
results are: Theorem 4.9, which gives an algebraic condition for a complex F to be a
virtual resolution of M , and Theorem 4.10 which specializes Theorem 4.9 to the case
when the first free module in the complex is S and we are resolving S/I.

The reason for considering the special case of Theorem 4.10 is that the two meth-
ods, which are given in [2], of producing virtual resolutions come from minimal free
resolutions. The first method constructs a virtual resolution of an S−module M
by removing summands from the minimal free resolution. In general, this method
shortens and thins out the complex, but does not leave it exact. The second method
applies to sets of points, and guarantees that there is an ideal Q such that the min-
imal free resolution of S/(I ∩ Q) is a virtual resolution of S/I with length equal to
the dimension of X = Pn1 × · · · × Pnr .

Finally, we consider examples of virtual resolutions in P1 × P1.



CHAPTER 2

Background

In this chapter we begin by reviewing projective varieties and their correspondence
with radical homogeneous ideals. We then follow [4] to discuss algebraic techniques
which are used to study these ideals.

1. Projective Varieties

Let K be an algebraically closed field, and let Pn be the K−projective space with
homogeneous coordinates [x0 : . . . : xn]. Projective space can be thought of as the
quotient

Pn = (Kn+1 r 0)/ ∼
where two vectors are identified if they are non-zero multiples of each other. Consider
a subset V ⊂ Pn, and map into the polynomial ring R = K[x0, . . . , xn] by looking at
the homogeneous polynomials which vanish on V . We define the homogeneous ideal
I(V ) to be the ideal generated by the homogeneous polynomials vanishing on V , that
is,

I(V ) = 〈{f ∈ R : f is homogeneous and f(x) = 0 for all x ∈ V }〉 .
Similarly, if I ⊂ R is a homogeneous ideal, we can define V(I) ⊂ Pn to be the set

V(I) = {x ∈ Pn : f(x) = 0 for all f ∈ T},
where T is the set of homogeneous elements in I. This gives us a bijective correspon-
dence between sub-varieties V ⊂ Pn and radical homogeneous ideals I ⊂ R. Recall
that an ideal is homogeneous if it is generated by homogeneous elements (that is
polynomials where every monomial has the same total degree), and an ideal is radi-

cal if I =
√
I, where

√
I = {f ∈ R : there is some n ∈ N such that fn ∈ I}.

2.1. Theorem. (see exercises 2.1-2.4 in [8]).

Let m = 〈x0, . . . , xn〉 ⊂ R = k[x0, . . . , xn]. There is a bijective correspondence

{ non-empty and closed sub-varieties of Pn} ⇐⇒ {homogeneous radical ideals not equal to m}

The ideal m is called the irrelevant ideal of Pn.

The saturation of an ideal by m is the ideal

(I : m∞) = {f ∈ R : fmn ⊂ I for some n ∈ N}.
3



4 2. BACKGROUND

Note that every ideal in the correspondence of Theorem 2.1 is equal to its satu-
ration.

2.2. Lemma. If I ( R is a radical homogeneous ideal not equal to m, then we have

I = (I : m∞).

Proof. Since I is radical, it is the intersection of the minimal prime ideals con-
taining it (see Proposition 1.14 in [1]). Every such prime ideal P is contained in m

because P also is homogeneous. Indeed, since I is homogeneous we have I ⊂ P̂ where
P̂ is the ideal generated by the homogeneous elements in P . Since it suffices to check
the primality of a homogeneous ideal on homogeneous elements of R, we have that
P̂ is prime. Indeed if ab ∈ P̂ with a and b homogeneous, then ab ∈ P so either a or b
is in P . Since the element is homogeneous it is also in P̂ . Since P is a minimal prime
we conclude that P = P̂ , so it is homogeneous and hence must be contained in m.
Since I 6= m, there is a prime appearing in the decomposition of I which is strictly
contained in m, so m is not a minimal prime containing I.

Its clear that I ⊂ (I : m∞). Moreover if we have

f ∈ (I : m∞),

then there exists n ∈ N such that for each xi we have

fxni ∈ I.

Now, if f /∈ I then f /∈ P for some minimal prime ideal P containing I. Then xni ∈ P
and hence xi ∈ P for each i. This shows that m = P which is a contradiction. We
conclude that f ∈ I and that I = (I : m∞).

�

This correspondence shows us that we can study sub-varieties V ⊂ Pn by studying
the m−saturated radical homogeneous ideals of R. In sections 2 and 3 we outline
some of the tools used in studying these ideals.

2. Free Resolutions

Let M be a finitely generated R−module. If we wish to study the structure of
M , we start by choosing a set of generators, f1, . . . , fm, for M . This is equivalent to
choosing a surjective R−module homomorphism

Rm ϕ0−→M

ei 7→ fi,

where ei is the i−th standard basis vector in the free module Rm,
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ei =


0
...
1
...
0

 .

By the First Isomorphism Theorem (Theorem 4 of section 10.2 in [6]), we then have

M ∼= Rm/ ker(ϕ0).

If
∑m

i=1 aiei ∈ ker(ϕ0), then we have

0 = ϕ0

(
m∑
i=1

aiei

)
=

m∑
i=1

aiϕ0(ei) =
m∑
i=1

aifi.

The elements a1
...
am

 ∈ ker(ϕ0)

are called syzygies of f1, . . . , fm, and the kernel, ker(ϕ0), is called the (first) syzygy
module of M .

We see that to understand the structure of M we need to understand both the
generators, f1, . . . , fm, of M and also the relations between them.

Since these relations form the kernel of the R−module homomorphism, Rm ϕ0−→
M , they form a finitely generated submodule of Rm (since R is Noetherian). To
understand this submodule, we must then repeat the process of choosing generators
and considering the relations between them. Again, choosing a set of generators is
equivalent to choosing a surjective map,

Rn ϕ1−→ ker(ϕ0),

and the relations between the generators form the kernel of this map.

This gives an exact sequence

Rn ϕ1−→ Rm ϕ0−→M → 0.

Continuing in this way gives rise to the definition of a resolution.

2.3. Definition. (Definition 1.9 in Chapter 6 of [4]) A free resolution of an
R−module M is an exact sequence

· · · → Fl
ϕl−→ Fl−1

ϕl−1−−→ · · · → F1
ϕ1−→ F0

ϕ0−→M → 0

where each Fi is a free R−module.
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If the resolution is eventually 0, that is, if there is some l such that Fi = 0 for all
i > l and Fl 6= 0, then the resolution is said to be finite of length l.

When the module M is finitely generated and each Fi is isomorphic to Rt for
some t, we can represent the maps ϕl by matrices over R (in the exact same way that
we represent linear transformations of finite dimensional vector spaces).

Of course this definition can be applied to any ring R and any R−module M .
A natural question to ask is when an R−module has a finite free resolution. The
following example shows that this need not be the case when R is a quotient ring,
even though the module in question is finitely generated.

2.4. Example. (Exercise 11 in Section 6.1 of [4])

Consider R = K[x]/〈x2〉 and M = 〈x〉 ⊂ R. The kernel of the map R→M given
by multiplication by x,

ϕ : R→M, f 7→ xf

is the module M itself. Indeed,

R = {ax+ b : a, b ∈ K},
and if

x(ax+ b) = 0,

then

ax2 + bx ∈ 〈x2〉,
so b = 0.

This gives an infinite resolution

· · · → R→ R→ · · · → R→M → 0,

where each map is multiplication by x.

In some sense, every resolution of M contains this one. Suppose that we have any
resolution of M ,

· · · → Fl
ϕl−→ Fl−1 → · · · → F0

ϕ0−→M → 0.

Since ϕ0 is surjective, there must exist some element f0 6= 0 mapping to x ∈ M .
Hence ϕ0(xf0) = x2 = 0, so xf0 ∈ ker(ϕ0). Thinking of the free module F0 as Rt for
some t, if xf0 = 0, then we must have each component of xf0 in 〈x2〉, and hence we

could factor f0 as f0 = xf̃0. However, we would then have ϕ0(xf̃0) = xϕ0(f̃0), and

since ϕ0(f̃0) ∈ 〈x〉, we would have ϕ0(f0) = 0 which is a contradiction. This shows
that the kernel of ϕ0 is non-zero.

Now since im(ϕ1) = ker(ϕ0), there must be some f1 ∈ F1 mapping to xf0. We
again have that xf1 6= 0 showing that the kernel, ker(ϕ1) is non-trivial. Indeed,
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suppose that xf1 = 0. Then we could again factor f1 as f1 = xf̃1 (thinking of F1 as
Rs for some s). Then in each component, i = 1, . . . , t, we have

xϕ1(f̃1)i = x(f0)i,

in R. This shows that in K[x] we have

xϕ1(f̃1)i = x(f0)i + gix
2,

for some gi ∈ K[x], and hence

ϕ1(f̃1)− f0 = xg

where g is the vector consisting of the classes of the gi. Again since ϕ0(g) ∈ 〈x〉, we
have

ϕ1(f̃1)− f0 ∈ ker(ϕ0) = im(ϕ1).

So we can find some g1 ∈ F1 such that ϕ1(g1) = ϕ1(f̃1) − f0, showing that f0 ∈
im(ϕ1) = ker(ϕ0), and this is a contradiction since ϕ0(f0) = x.

Using an inductive argument, we can show that the kernel of each map is non-
trivial implying that the resolution must be infinite. The inductive argument is as
follows:

The claim is that for each element fl mapping to xfl−1 we have xfl 6= 0 showing
that the kernel is non-trivial. If xfl = 0 then we could factor fl = xf̃l and conclude
that

ϕl(f̃l)− fl−1 = xgl
for some gl. However, fl−1 maps to xfl−2, and ϕl−1 ◦ ϕl = 0 so we get ϕl−1(−xg) =
xfl−2 and this contradicts the inductive assumption since x(−xg) = 0.

♦

Fortunately, the context we are interested in is when R is a polynomial ring over
a field, that is R = K[x0, . . . , xn], and in this case we have the following result:

2.5. Theorem. (Theorem 2.1 in Chapter 6 of [4]) Let R = K[x0, . . . , xn] and M
a finitely generated R−module. Then M has a free resolution of length less than or
equal to n+ 1.

The proof of Theorem 2.5 in [4] gives an algorithm to compute free resolutions,
but it very quickly becomes unrealistic to compute by hand. Macaulay2 [7] imple-
ments many algorithms useful for computations in algebraic geometry. The following
example uses Macaulay2 and demonstrates how a resolution depends on the genera-
tors chosen at each stage.

2.6. Example. (Exercise 1 of Section 3 in [4])

Let R = K[x, y] and

I = 〈x2 − x, xy, y2 − y〉 ⊂ R.
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Using Macaulay2, we compute the generators of the first syzygy module and get the
partial resolution,

R3


y 0 y2 − y

1− x y − 1 0
0 −x x− x2


−−−−−−−−−−−−−−−−−−→ R3

(
x2 − x xy y2 − y

)
−−−−−−−−−−−−−−−−→ I → 0.

If we label the columns of the matrix g1, g2, g3, then we see that

(y − 1)g1 + (x− 1)g2 = g3.

Since g1 and g2 are independent, we conclude thaty − 1
x− 1
−1


is a generator for the second syzygy module, and we get a resolution

0→ R


y − 1
x− 1
−1


−−−−−−→ R3


y 0 y2 − y

1− x y − 1 0
0 −x x− x2


−−−−−−−−−−−−−−−−−−→ R3

(
x2 − x xy y2 − y

)
−−−−−−−−−−−−−−−−→ I → 0.

We see that this resolution has length 2. Alternatively, since g3 is a combination of g1

and g2, we can remove it from the set of generators and we get a shorter resolution,

0→ R2


y 0

1− x y − 1
0 −x


−−−−−−−−−−−−→ R3

(
x2 − x xy y2 − y

)
−−−−−−−−−−−−−−−−→ I → 0.

♦

3. Graded Resolutions

The ring R = K[x0, . . . , xn] has structure which we have not yet used, namely it
is a graded ring with respect to degree. That is, we have a direct sum decomposition

R =
⊕
s≥0

Rs,

where Rs is the additive subgroup of homogeneous polynomials of degree s along with
0. Note that R0 is just the field K.

2.7. Definition. (Definition 3.2 in Chapter 6 of [4]) An R−module M is said to be
graded (over Z) if there is a collection of subgroups, Mt ⊂M , satisfying

M =
⊕
t∈Z

Mt,

and RsMt ⊂Ms+t for all s ≥ 0 and t ∈ Z.
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A homomorphism of graded R−modules ϕ : M → N is said to be graded of degree
d if ϕ(Mt) ⊂ Nt+d for all t.

If a module M is graded, then we can form a “twisted” module M(d) by taking

M(d)t = Mt+d.

We can also form twisted free modules by taking a direct sum

R(d1)⊕R(d2)⊕ · · · ⊕R(dm),

where

[R(d1)⊕R(d2)⊕ · · · ⊕R(dm)]t = R(d1)t ⊕R(d2)t ⊕ · · · ⊕R(dm)t.

This leads to the definition of a graded resolution.

2.8. Definition. (Definition 3.7 in Chapter 6 of [4]) A graded free resolution of a
graded R−module M is an exact sequence,

· · · → Fl
ϕl−→ Fl−1 → · · · → F0

ϕ0−→M → 0,

such that each Fi is a graded free R−module and each ϕi is a graded homomorphism
of degree 0.

The simplest source of graded modules are ideals of R generated by homogeneous
elements. We can “homogenize” the ideal from Example 2.6 by adding a new variable
z. This gives us the following:

2.9. Example. (Exercise 4 from Section 3 of Chapter 6 in [4]) Let S = K[x, y, z] and
I = 〈x2 − xz, xy, y2 − yz〉 ⊂ S. Again using Macaulay2 we compute the generators
of the first syzygy module to be

g1 =

 y
z − x

0

 , g2 =

 0
y − z
−x

 , g3 =

y2 − yz
0

xz − x2

 .

We see that g3 = (y − z)g1 + (x − z)g2, and g1 and g2 are independent. This shows
that

y − zx− z
−1


generates the syzygies of the first syzygy module. This gives us a graded resolution,
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0→ R(−4)


y − z
x− z
−1


−−−−−−→

R(−3)2

⊕
R(−4)


y 0 y2 − yz

z − x y − z 0
0 −x xz − x2


−−−−−−−−−−−−−−−−−−−→ R(−2)3

(
x2 − xz, xy, y2 − yz

)
−−−−−−−−−−−−−−−−→I → 0.

The twists are computed in ascending order starting at F0 = R3. We see that every
generator is homogeneous of degree 2, so the homomorphism mapping onto I raises
degree by 2. We compensate by shifting the degree of R3 by −2. At the next stage,
the first two columns of of the matrix are homogeneous of degree 1, so we need to
shift two copies of R in F1 by −1. Since F0 has already been shifted by −2, we get
a total shift of −3. Similarly, the last column of the second matrix has degree 2, so
we must shift by −4. We continue in this way until every map in the resolution has
degree 0.

Since g3 is a combination of g1 and g2, we could leave this column out of the
graded resolution and obtain a new graded resolution,

0→ R2(−3)


y 0

z − x y − z
0 −x


−−−−−−−−−−−−→ R3(−2)

(
x2 − xz, xy, y2 − yz

)
−−−−−−−−−−−−−−−−→ I → 0.

Note that these two resolutions are exactly the homogenized resolutions from Exam-
ple 2.6. ♦

2.10. Definition. (Proposition 3.10 in Chapter 6 of [4]) Let

· · · → Fl
ϕl−→ Fl−1 → · · · → F0

ϕ0−→M → 0

be a graded free resolution of an R−module M . The resolution is said to be minimal
if each map ϕi maps the standard basis of Fi onto a minimal generating set of im(ϕi).

Alternatively, we could use an equivalent definition;

2.11. Theorem. (Definition 3.9 in Chapter 6 of [4])

· · · → Fl
ϕl−→ Fl−1 → · · · → F0

ϕ0−→M → 0

is minimal if and only if for every map ϕi with i ≥ 1, the matrix representing ϕi does
not contain any nonzero constant entries.

2.12. Remark. We can state the definition of a minimal free resolution more com-
pactly as follows:

A minimal free resolution of a graded R−module M is a complex of graded free
R−modules
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F : F0
ϕ1←− F1 ←− · · ·

ϕl←− Fl · · ·
with H0(F ) ∼= M and Hi(F ) = 0 for all i ≥ 1, and each ϕl is a degree 0 map satisfying
im(ϕl) ⊂ mFl−1.

We also have the syzygy theorem for graded resolutions. The proof of Theorem
2.5 given in [4] easily adapts to the graded case.

2.13. Theorem. (Theorem 3.8 in Chapter 6 of [4]) Let M be a finitely generated
graded K[x0, . . . , xn] module. Then there exists a graded resolution of M of length
less than or equal to n+ 1.

The advantage of a minimal resolution is that it is unique up to isomorphism in
the following sense.

2.14. Definition. (Definition 3.11 in Chapter 6 of [4]) Let

· · · → Fl
ϕl−→ Fl−1 → · · · → F0

ϕ0−→M → 0

and

· · · → Gl
ψl−→ Gl−1 → · · · → G0

ψ0−→M → 0

be two graded free resolutions of M . These resolutions are said to be isomorphic if
there exists degree 0 isomorphisms αi : Fi → Gi for each i ≥ 0 which give rise to a
commutative ladder diagram,

· · · Fl Fl−1 · · · F0 M 0

· · · Gl Gl−1 · · · G0 M 0

αl

ϕl

αl−1 α0

ϕ0

idM

ψl ψ0

2.15. Theorem. (Theorem 3.13 in Chapter 6 of [4]) Let M be a finitely generated
graded R−module. Any two minimal free resolutions of M are isomorphic.

Even though we did not use the property of the resolution being graded in defini-
tion 2.10, the idea of a minimal free resolution of a non-graded module is not useful.
This is because theorem 2.15 only holds if the minimal resolutions are graded. To
illustrate this, consider the following example.

2.16. Example. Let R = K[x] and M = 〈x〉. We can choose two different minimal
generating sets for M and end up with non-isomorphic “minimal” resolutions. Of
course, one of them is not actually minimal because it is not graded.

Consider the sets of minimal generators {x2 + x, x2} and {x}. We construct two
resolutions.

The syzygy module of 〈x2 + x, x2〉 is generated by
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(
x

−x− 1

)
,

so we get a resolution

0→ R

 x
−x− 1


−−−−−−−→ R2

(
x2 + x x2

)
−−−−−−−−−→M → 0.

However from the generator x we also get a resolution,

0→ R
x−→M → 0.

The two resolutions are not even the same size so they cannot be isomorphic, yet
each map takes the standard basis onto a minimal generating set of its image. The
first resolution contains non-homogeneous elements in the matrices, so it cannot be
a graded resolution, whereas the second resolution is a minimal resolution if we take
the shifted grading,

0→ R(−1)
x−→M → 0.

♦



CHAPTER 3

Toric Varieties

1. The Definition of a Toric Variety.

Before defining toric varieties, we revisit projective varieties as an example. Recall
the notation from Chapter 2. The K−projective space with homogeneous coordinates
[x0 : . . . : xn] is denoted Pn, R is the polynomial ring K[x0, · · · , xn], a variety V ⊂ Pn
corresponds to an ideal

I(V ) = {f ∈ R : f is homogeneous and f(x) = 0 for all x ∈ V },
and a homogeneous ideal I ⊂ R corresponds to the variety

V(I) = {x ∈ Pn : f(x) = 0 for all f ∈ T},
where T ⊂ I is the set of homogeneous elements in I.

If V ⊂ Pn is a sub-variety, then we can represent V as the union of affine Zaraski
open sets (for more details see chapter 2 and 3 of [5]). Indeed, let Ui = Pn r V(xi).
The map

[a0 : · · · : an] 7−→
(
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an
ai

)
gives an isomorphism from Ui to Kn. Then V ∩Ui is a Zariski open subset of V . The
map above takes V ∩ Ui to the sub-variety of Kn defined by

f

(
x0

xi
, . . . ,

xi−1

xi
, 1,

xi+1

xi
, . . . ,

xn
xi

)
= 0

as f ranges over all homogeneous polynomials in I(V ). Since the Ui cover Pn, these
affine pieces V ∩Ui cover all of V , and hence V decomposes as a union of these affine
pieces.

We now consider these sets Ui more carefully. Each Ui is a copy of Kn in a
different set of variables (the xj/xi). For each i 6= j, i, j ∈ {0, . . . , n}, we have the
open subsets

(Ui)xj
xi

⊂ Ui, (Uj) xi
xj

⊂ Uj,

where (Ui)xj
xi

is the set

(Ui)xj
xi

=

{
p ∈ Ui :

xj
xi

(p) 6= 0

}
.

This Zariski open set is itself an affine variety (see section 1.0 of [5]). The coordinate
rings of these affine varieties are simply given by the localization of the coordinate

13
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rings of each Ui (see Lemma 2.0.3 in [5]),

K
[
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

]
xj
xi

.

The elements of this localized ring are ratios of polynomials over a power of
xj
xi

,

f

(xj/xi)t
, t ≥ 0.

We then get a K−algebra isomorphism

g∗ji : K
[
x0

xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xn
xj

]
xi
xj

−→ K
[
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

]
xj
xi

,

given by
xk
xj
7→ xk

xi
/
xj
xi
,

for k 6= j and (
xi
xj

)−1

7→ xj
xi
.

Hence we get an isomorphism of affine varieties (see Corollary 3.7 of [8])

gji : (Ui)xj
xi

→ (Uj) xi
xj

.

These affine varieties (Ui)xj
xi

and (Uj) xi
xj

are the same open set Ui ∩ Uj ⊂ Pn since

they are both the set of points p ∈ Pn which have both coordinates xi and xj non-
zero. The point in viewing it this way, is that we can start with the affine varieties
Ui and glue them together over their intersection using the isomorphisms gij. This
construction works since gij = g−1

ji and gki = gkj ◦ gji.

For projective space, we also have the quotient construction,

Pn = (Kn+1 r 0)/K∗

where K∗ acts on Kn+1 by scalar multiplication. Note that the set we remove from
the affine space Kn+1 is the vanishing set of the irrelevant ideal m = 〈x0, . . . , xn〉 ⊂
K[x0, . . . , xn]. This gives us two ways to think about projective space; as the quotient
of an affine space (minus a certain set) by a group action, or as the gluing together
of finitely many affine varieties.

More generally, suppose that we have finitely many affine varieties Vα, and for all
pairs α, β, we have Zariski open subsets Vβα ⊂ Vα and isomorphisms gβα : Vβα → Vαβ
which satisfy the compatibility conditions:

(1) gαβ = g−1
βα ,

(2) gβα(Vβα ∩ Vγα) = Vαβ ∩ Vγβ and gγα = gγβ ◦ gβα on Vβα ∩ Vγα.
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Then let Y be the disjoint union of the Vα and ∼ a relation on Y where a ∼ b if
and only if there is some α and β such that a ∈ Vα, b ∈ Vβ, and gβα(a) = b. The
first condition shows that ∼ is reflexive and symmetric and the second shows that
it is transitive. Hence we can form the quotient space X = Y/ ∼ with the quotient
topology. This quotient space X locally looks like an affine variety since for each α
we can take

Uα = {a ∈ X : a ∈ Vα},
and the quotient map

hα : Vα → Uα, h(a) = a

is a homeomorphism.

3.1. Definition. (Definition 3.0.5 from [5]) The space X = Y/ ∼ from above is
called an abstract variety.

A Zariski closed subset of such a variety is a sub-variety. A variety is said to be
irreducible if it is not the union of two proper sub-varieties.

3.2. Example. A sub-variety V ⊂ Pn is also an abstract variety by taking the Zariski
open sets Vi = V ∩ Ui, and gluing them together similar to above.

♦

3.3. Definition. (Definition 3.1.1 in [5]) A toric variety is an irreducible variety X
which contains a torus T = (K∗)m as a Zariski open subset such that the action of
T on itself extends to an action of T on X which is algebraic (that is every element
t ∈ T gives a homomorphism from X to X).

3.4. Example. Pn is a toric variety. Indeed, it has the torus

TPn = Pn rV(x0 · · ·xn) = {[a0 : · · · : an] ∈ Pn : a0 · · · an 6= 0}
= {[1 : t1 : · · · : tn] ∈ Pn : t1, . . . tn ∈ K∗}
∼= (K∗)n

as a Zariski open subset. Then we extend the action of TPn by

[1 : t1 : · · · : tn] · [a0 : · · · : an] = [a0 : t1a1 : · · · : tnan].

A projective variety is irreducible if and only if its associated ideal is prime (see
Exercise 2.4 in [8]). The only homogeneous polynomial which vanishes on all of Pn
is the zero polynomial, showing that I(Pn) = 0. Thus, Pn is irreducible and hence a
toric variety.

♦

2. The Affine Toric Variety of an Affine Semi-group

Let T = (K∗)n be a torus and consider its characters (group homomorphisms)
χ : T → K∗. It turns out (see section 16 of [9]) that every character of (K∗)n arises
as one of the form

χm(t1, . . . , tn) = ta11 · · · tann , m = (a1, . . . , an) ∈ Zn,
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and hence the characters of T form a group isomorphic to Zn. This group is the
character lattice of T .

Given a torus T with character lattice M and a finite subset A = {m1, . . . ,ms} ⊂
M , we define a map

ΦA : T → Ks

by

ΦA(t) = (χm1(t), . . . , χms(t)).

Let YA be the Zariski closure of this map. The YA is an affine toric variety by Propo-
sition 1.1.8 in [5].

3.5. Definition. (See section 1.1 of [5]) An affine semi-group is a semi-group (a
set with an associative binary operation and an identity) with the following further
requirements:

(1) The binary operation is commutative.

(2) The semi-group is finitely generated.

(3) The semi-group can be embedded into a lattice M .

An example of an affine semi-group is Nn ⊂ Zn. Given any lattice M and any
finite set A ⊂ M , we have the semi-group NA = {

∑
m∈A amm : am ∈ N} ⊂ M . Up

to isomorphism, all semi-groups are of this form (since by definition they must be
able to be embedded into a lattice).

From an affine semi-group S, we can construct the semi-group algebra K[S] as
follows.

K[S] =

{∑
m∈S

cmχ
m : cm ∈ K and cm = 0 for all but finitely many m

}
with multiplication induced by the semi-group structure, χmχm

′
= χm+m′ . If S =

NA, where A = {m1, . . . ,ms}, then we have

(3.6) K[S] = K[χm1 , . . . , χms ].

3.7. Example. (Example 1.1.12 of [5]) For the semi-group Nn ⊂ Zn, we have

K[Nn] = K[x1, . . . , xn],

with each xi = χei , where ei is the standard basis vector.
♦

3.8. Proposition. (Proposition 1.1.14 in [5]) If S = NA is an affine semi-group,
then K[S] ∼= K[x1, . . . , xn]/I(YA). Hence K[S] is the coordinate ring corresponding to
the toric variety YA.
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3.9. Notation. If Y is an affine variety we use the notation K[Y ] as its coordinate
ring where K[Y ] = K[x1, . . . , xn]/I(Y ). Since varieties with isomorphic coordinate
rings are isomorphic(see section 1.0 of [5]), we use the notation Y = Spec(K[Y ]).
There is an explicit construction of Spec(R) for a ring R, but for now we use this
as notation to emphasize the relationship between the ring and the variety. For the
toric variety YA above, we have YA = Spec(K[S]).

3. The Affine Toric Variety of a Rational Polyhedral Cone.

3.10. Definition. (Definition 1.2.1 of [5]) Let NR and MR be a pair of dual vector
spaces (for instance we could take NR = NR = Rn, viewed as dual spaces via the
usual inner product). A convex polyhedral cone in NR is a set of the form

σ = Cone(S) =

{∑
u∈S

λuu : λu ≥ 0

}
,

where S ⊂ NR is a finite subset. Let m ∈ σ∨ and define

Hm = {u ∈ NR : 〈m,u〉 = 0},
called the hyperplane defined by m. A face τ of σ, written τ ≺ σ, is given by
τ = σ ∩Hm. We say that σ is strongly convex if {0} is one of its faces (so that it is
a cone emanating from the origin).

Given a convex polyhedral cone σ ⊂ NR, its dual cone is defined to be

σ∨ = {m ∈MR : 〈m,u〉 ≥ 0 for all u ∈ σ}.

We are interested in cones which are generated by lattice points.

3.11. Definition. (Definition 1.2.14 of [5]) Let N and M be dual lattices with asso-
ciated dual vector spaces NR = N ⊗Z R and MR = M ⊗Z R (for instance we use Zn
as the lattice of Rn). A rational convex polyhedral cone is a convex polyhedral cone
σ ⊂ NR such that σ = Cone(S) for some finite set S ⊂ N .

The usefulness of rational convex polyhedral cones is the following:

3.12. Proposition. (Proposition 1.2.17 in [5]) Let σ ⊂ NR be a rational convex
polyhedral cone. Define the lattice points

Sσ = σ∨ ∩M ⊂M.

Then Sσ is an affine semi-group.

Hence, starting from a rational convex polyhedral cone σ, we produce an affine
semi-group by Proposition 3.12, then apply Proposition 3.8 to produce a toric variety
Uσ = Spec(K[Sσ]).
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4. The Toric Variety of a Fan.

We have constructed an affine toric variety from a rational convex polyhedral
cone. We also saw that we can glue together affine varieties into an abstract variety.
In this section we discuss the construction of an abstract toric variety from gluing
together the affine toric varieties constructed from cones in the previous section.

3.13. Definition. (Definition 3.1.2 of [5]) A fan Σ in NR is a finite collection of cones
such that

(1) Every cone σ ∈ Σ is a strongly convex rational polyhedral cone.

(2) For every σ ∈ Σ, each face of σ is also in Σ.

(3) For every pair σ1, σ2 ∈ Σ, their intersection is a face of both σ1 and σ2.

The conditions on the cones in a fan Σ are exactly what is necessary to satisfy
the gluing conditions of Definition 3.1 to construct an abstract variety from the affine
varieties Uσ = Spec(K[Sσ]). We denote the variety associated to the fan Σ as XΣ

(the details can be found in 3.1 of [5]).

Before giving the main result of this section, we have a series of definitions in
order to understand the hypothesis of the theorem. Recall the notation from the
definition of an abstract variety. We had affine varieties Vα, and homeomorphisms
hα : Vα → Uα where the Zariski open sets Uα covered X.

3.14. Definition. (Definition 3.0.1 and 3.0.9 of [5]) Let V be an affine variety and
U ⊂ V a Zariski open subset. A map φ : U → K is called regular if for all p ∈ U
there exists fp ∈ K[V ] such that p ∈ Vfp and φ

∣∣
Vfp
∈ K[V ]fp , where Vfp = V rV(fp).

In other words, there is a Zariski open set Vfp such that φ = g/fnp for some g ∈ K[V ]
so that φ is locally a rational function.

Let U be an open subset of an abstract variety X and let Wα = h−1
α (U∩Uα) ⊂ Vα.

A function φ : U → K is called regular if

φ ◦ hα
∣∣
Wα

: Wα → K
is regular for all α.

Given an abstract variety X, a point p ∈ X, and neighbourhoods U1 and U2 of p,
two regular functions f1 and f2 are equivalent at p, written f1 ∼ f2, if there exists a
neighbourhood U ⊂ U1 ∩U2 of p such that f1

∣∣
U

= f2

∣∣
U

. The local ring of X and p is
defined to be

OX,p = {f : U → K : U is a neighbourhood of p and f is regular}/ ∼ .

3.15. Definition. (See Section 1.0 and Definition 3.0.10 of [5]) Let R be an integral
domain and F its field of fractions. R is called normal if every element of F which is
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the root of a monic polynomial in R[x] lies in R (for example fields, unique factor-
ization domains, and local rings are normal).

An abstract variety X is called normal if it is irreducible and the local rings OX,p
are normal for every p ∈ X.

We also need a condition on the topology of the variety.

3.16. Definition. (Definition 3.0.16 of [5]) A variety X is called separated if the
image of the diagonal map

∆: X → X ×X, p 7→ (p, p)

is Zariski closed. An equivalent definition when K = C (Theorem 3.0.17 of [5]) is
that X is Hausdorff in the classical topology.

We are now ready to state the main result from this section.

3.17. Theorem. (Theorem 3.1.5 of [5]) The variety XΣ associated to a fan Σ is a
normal separated toric variety. Conversely, for every normal separated toric variety
X with torus TN (N the character lattice of T ), there is a fan Σ in NR such that
X ∼= XΣ.

3.18. Example. (Example 3.1.9 from [5]).

Let NR = R2 and N = Z2 with standard basis e1, e2. Then consider the fan Σ,
pictured below.

σ0σ1

σ2

Part (a) of Proposition 1.2.8 in [5] implies the dual cone is generated by the facet
normals of the cones. In our case the dual cones of σ0, σ1, and σ2 are generated by
the normal vectors to the the rays which bound them.

For σ0 we have

σ∨0 = Cone(e1, e2).
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This gives the semi-group Sσ0 = {(a, b) : a, b ∈ N} = N2, and hence by 3.6 get the
algebra K[Sσ0 ] = K[x, y] which gives

Uσ0 = Spec(K[x, y]).

For σ1, we have

σ∨1 = Cone(−e1,−e1 + e2),

giving the semi-group

Sσ1 = {(−a+ b, b) : a, b ∈ N} = N{(−1, 0), (−1, 1)}.
Hence we have the algebra

K[Sσ1 ] = K[x−1, x−1y].

and the affine variety

Uσ1 = Spec(K[x−1, x−1y])

Similarly,

Uσ2 = Spec(K[xy−1, y−1]).

Proposition 3.1.3 in [5] shows that if τ = σ1 ∩ σ2, then Sτ = Sσ1 + Sσ2 . This
provides us the gluing data necessary to construct the toric variety. Recall a face
τ ≺ σ is of the form τ = σ ∩ Hm. Proposition 1.3.16 of [5] shows that K[Sτ ] is the
localization, K[Sσ]χm . If τ = σ1 ∩ σ2, then we have σ1 ∩Hm = τ = σ2 ∩Hm for some
m ∈ σ∨1 ∩ (−σ2)∨ ∩M . Hence we have

(Uσ1)χm = Uτ = (Uσ2)χ−m .

This gives the gluing data on the coordinate rings,

g∗10 : K[x, y]x ∼= K[x−1, x−1y]x−1

g∗20 : K[x, y]y ∼= K[xy−1, y−1]y−1

g∗21 : K[x−1, x−1y]x−1y
∼= K[xy−1, y−1]xy−1

Using homogeneous coordinates [x0 : x1 : x2] on P2, then the map

x 7→ x1/x0, y 7→ x2/x0

identifies the standard covering Ui of P2 with Uσi . For example,

Uσ0
∼= Spec(K[x, y]) ∼= Spec(K[x1/x0, x2/x0]) ∼= U0

and similarly

Uσ1
∼= Spec(K[x−1x−1y]) ∼= Spec(K[x0/x1, x2/x1]) ∼= U1.

From the gluing data, we have

g∗10 : K[x, y]x ∼= K[x−1, x−1y]x−1

which corresponds to the gluing data

g∗10 : K[x1/x0, x2/x0]x1/x0
∼= K[x0/x1, x2/x1]x0/x1

from P2. Hence the variety XΣ is P2.
♦
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5. The Total Coordinate Ring and Irrelevant Ideal

In this section we discuss the correspondence between toric varieties and ideals,
generalizing the correspondence discussed in Section 1 of Chapter 2.

Let XΣ be the toric variety of a fan Σ in NR. Similar to the quotient construction
of Pn, we wish to write XΣ as

XΣ = (Kr r Z)/G

for some exceptional set Z and group action G.

Let Σ(1) denote the set of one dimensional cones in Σ (the rays). Then we define
the total coordinate ring of XΣ to be the polynomial ring with one variable for each
ray ρ ∈ Σ(1),

S = K[xρ : ρ ∈ Σ(1)].

For each σ ∈ Σ, let σ(1) be the set of rays contained in σ, and define the monomial

xσ̂ =
∏

ρ∈Σ(1)rσ(1)

xρ.

Now we define the irrelevant ideal of XΣ to be

B = 〈xσ̂ : σ ∈ Σ〉.
Note that whenever we have a face τ ≺ σ, xσ̂ divides xτ̂ , so the irrelevant ideal is
generated by the monomials corresponding to maximal cones. If we denote the set
of maximal cones by Σmax, then we have

B = 〈xσ̂ : σ ∈ Σmax〉.
Now we take the affine set K|Σ(1)| and the exceptional set Z(Σ) = V(B). The group
G in the quotient construction relies on the class group of XΣ.

3.19. Definition. (See Section 4.0 of [5]) A discrete valuation on a field K is a group
homomorphism ν : K∗ → Z, which is surjective and satisfies

ν(x+ y) ≥ min(ν(x), ν(y)),

whenever x, y, x+ y ∈ K∗. The corresponding discrete valuation ring is

R = {x ∈ K∗ : ν(x) ≥ 0} ∪ {0}.
Let X be an irreducible variety. A prime divisor of X is an irreducible sub-variety

D ⊂ X of co-dimension 1. We define Div(X) to be the free abelian group generated
by prime divisors D ⊂ X. Elements of Div(X) are called Weil divisors.

If X is normal and D is a prime divisor of X, we get a discrete valuation ring

OX,D = {φ ∈ K(X) : φ is defined on U ⊂ X open with U ∩D 6= ∅},
with a discrete valuation

νD : K(X)∗ → Z.
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If X is normal and f ∈ K∗(X) , then νD(f) is zero for all but finitely many prime
divisors D ⊂ X (Lemma 4.09 of [5]). This allows us to define the divisor of f ∈
K(X)∗,

Div(f) =
∑
D⊂X

νD(f)D.

Div(f) is called a principle divisor, and the set of all principle divisors is denoted
Div0(X).

Now we have enough to define the class group,

3.20. Definition. (Definition 4.0.13 of [5]) Let X be a normal variety. The class
group of X is

Cl(X) = Div(X)/Div0(X)

The group G involved in the quotient construction is

G = HomZ(Cl(XΣ),K∗).
For more details on where this group comes from, see Section 5.1 of [5]. Theorem
5.1.10 of [5] then gives XΣ

∼= ((K|Σ(1)|) r Z(Σ))/G.

A nice feature of the total coordinate ring is that it is graded by the class group.
Each ray ρ ∈ Σ(1) corresponds to a co-dimension 1 orbit of the torus TN ⊂ XΣ by
Theorem 3.2.6 in [5], whose closure is a prime divisor Dρ. In fact Theorem 4.1.3 in
[5] shows that the classes of these Dρ in Cl(X) form a generating set.

For a = (aρ) ∈ Z|Σ(1)|, and a monomial xa =
∏
x
aρ
ρ , we define the degree of xa to

be

deg(xa) =
∑
ρ

aρDρ ∈ Cl(X),

so that

deg(xρ) = Dρ.

For β ∈ Cl(X), we say that f ∈ Sβ is homogeneous of degree β.

With one more definition, we will have enough algebraic structure to give a cor-
respondence for toric varieties and ideals.

3.21. Definition. (Definitions 1.2.16 and 3.1.18 of [5]) A cone σ is called simplicial
if its minimal generators are linearly independent over R.

A toric variety XΣ is called simplicial if every σ ∈ Σ is simplicial.

In the following proposition by homogeneous we mean homogeneous with respect
to the grading induced by the class group CL(XΣ).

3.22. Proposition. (Proposition 5.2.7 of [5]) Let XΣ be a simplicial toric variety.
There is a bijective correspondence
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{Closed sub-varieties of XΣ} ⇐⇒ {Radical homogeneous ideals I ⊂ B ⊂ S}

Recall that an ideal I ⊂ S is called B−saturated if (I : B∞) = I. When the
toric variety XΣ is smooth (for instance projective space or a product of projective
spaces), Corollary 3.8 in [COX] gives another correspondence:

{Closed sub-varieties of XΣ} ⇐⇒ {B−saturated radical homogeneous ideals I ⊂ S}.
The relationship between these two sets of ideals is given by the bijective maps

I radical, homogeneous, B saturated 7→ I ∩B,
and

J radical, homogeneous, contained in B 7→ (J : B∞).





CHAPTER 4

Virtual Resolutions

We could now apply the techniques of minimal free resolutions discussed earlier
to the ideals associated to closed sub-varieties of a toric variety XΣ. The prin-
cipal example we are interested in is when XΣ is a product of projective spaces,
XΣ = Pn1 × · · · × Pnr . In this case, in turns out that the minimal free resolutions
are larger than is necessary to capture much of the geometric information. In [2],
virtual resolutions are defined and shown to be a useful analogue to minimal free
resolutions. The idea is to look at a free resolution of modules that when “sheafified”
give a resolution in the sense of sheaves. This allows a certain amount of homology
in the complex, and often leads to shorter sequences than the minimal free resolution.

1. The Definition of a Virtual Resolution

In order to define a virtual resolution, we first need to briefly discuss sheaves.

4.1. Definition. (See Section 2.1 of [8]) Let X be a topological space. A presheaf
of abelian groups (or rings, or modules, etc.) on X is a collection of abelian groups
F satisfying the following:

(1) For every open set U ⊂ X there is an abelian group F(U),

(2) For every inclusion V ⊂ U of open sets, there is a morphism

ρUV : F(U)→ F(V ),

(3) F(∅) = 0,

(4) ρUU is the identity map,

(5) If W ⊂ V ⊂ U are three open sets then ρUW = ρUV ◦ ρVW .

Hence a presheaf is a collection of abelian groups (rings, modules, etc) sitting
above each open set of X along with maps ρUV which “restrict” the group above U
to the group above V . the group F(U) is called the section of F above U

A sheaf is a presheaf with some extra local conditions on the sections.

4.2. Definition. (See Section 2.1 of [8]) A sheaf F on X is a presheaf satisfying the
following:
Let U be an open subset of X and {Vi} an open covering of U

25



26 4. VIRTUAL RESOLUTIONS

(1) If s ∈ F(U) such that ρUVi(s) = 0 for all i, then s = 0.

(2) If si ∈ F(Vi) such that for each i, j we have ρUVi∩Vj(si) = ρUVi∩Vj(sj), then
there is s ∈ F(U) such that ρUVi(s) = si for each i.

4.3. Example. (see section 3 of [5]) Recall from definition 3.14 what it means for a
function φ : U → K to be a regular function on an open set U of an abstract variety X.

Let OX(U) = {φ : U → K : φ is regular}. Then OX is a sheaf of rings on X.
OX is called the structure sheaf of X. Hence an abstract variety is a ringed space
(X,OX) with a finite open covering Uα such that (Uα,OX

∣∣
Uα

) is isomorphic to the

ringed space (Vα,OVα) for an affine variety Vα (see section 2.2 of [8] for more on ringed
spaces and schemes). ♦

4.4. Definition. (See Section 2.1 of [8]) A morphism of sheaves ϕ : F → G is a
collection of morphisms ϕ(U) : F(U) → G(U) which commutes with the restriction
maps, i.e. the following diagram commutes whenever V ⊂ U ⊂ X are open,

F(U) G(U)

F(V ) G(V )

ρUV

ϕ(U)

ρ′UV

ϕ(V )

If ϕ : F → G is a morphism of (pre)sheaves, we define the presheaf kernel and the
presheaf image of ϕ to be

U 7→ ker(ϕ(U)), U 7→ im(ϕ(U)).

When F and G are sheaves, the presheaf kernel is in fact a sheaf, however the image
may not be.

A similar definition can be made for the quotient of two (pre)sheaves. If F(U) is
a subgroup (subring, submodule, etc.) of G(U) for all U , then we define the presheaf
quotient to be

U 7→ F(U)/G(U).

Again, the presheaf quotient may not be a sheaf.

However, proposition 1.2 in chapter 2 of [8] shows that for every presheaf F , there
is a sheaf F+ associated to F which is unique up to a unique isomorphism. When F
is a sheaf, F ∼= F+ by this unique isomorphism. We define the image and quotient
sheaves to be the unique sheaves associated to the presheaf image and the presheaf
quotient respectively.

Now let XΣ be the toric variety associated to a fan Σ, let S be the total coordinate
ring (graded by the class group), and let B be the irrelevant ideal. Let M be a graded
S−module. Then proposition 5.3.3 from [5] shows that there exists a sheaf of modules

M̃ on XΣ whose sections above the open sets Uσ are given by the degree zero elements
of the localized module Mxσ̂ ,

M̃(Uσ) = (Mxσ̂)0.
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This gives us a functor from S−modules to quasi-coherent sheaves onXΣ. Proposition
3.1 of [3] shows that this is an exact functor, so that whenever we have an exact
sequence

0→M → N → N/M → 0,

we get an exact sequence of sheaves

0→ M̃ → Ñ → ˜(N/M)→ 0.

4.5. Definition. (Definition 1.1 in [2]) Let XΣ be a toric variety, S the total coordi-
nate ring, and B the irrelevant ideal. A virtual resolution of a graded S−module M
is a complex of free S−modules

F : F0 ← F1 ← F2 . . .

such that the associated complex of sheaves

F̃ : F̃0 ← F̃1 ← F̃2 . . .

is a locally free resolution of the sheaf M̃ . That is, the complex F̃ is exact in all

indices greater than 0 and the sheaf quotient F̃0/ im(ϕ̃1) is isomorphic to M̃ .

2. An Algebraic Condition for a Virtual Resolution

When XΣ is smooth, we have a nice algebraic definition of a virtual resolution.
First, we discuss the algebraic condition on the complex F to guarantee that the
complex F̃ is exact at indices i ≥ 1. This relies on a few things. The first, which was
already mentioned, is that the functor taking modules to sheaves is exact.

Exercise 1.6 from chapter 2 of [8] shows that whenever F ′ is a sub-sheaf of F , we
get an exact sequence

0→ F ′ → F → F/F ′ → 0,

and whenever we have an exact sequence

0→ F ′ → F → F ′′ → 0,

then F ′ is isomorphic to a sub-sheaf of F and F ′′ is isomorphic to the quotient sheaf
F/F ′.

We also need to discuss the construction of M̃ on an affine variety Spec(R). We
previously used Spec(R) just as notation to emphasize the relationship between the
coordinate ring and the variety. However, there is an explicit construction of Spec(R)
from the ring R. As a set, it consists of the prime ideals of R. For a detailed con-
struction of the topology and structure sheaf, see section 2 of chapter 2 in [8]. We

then define M̃(U) to be the set of all functions s : U →
∐

p∈U Mp, with s(p) ∈ Mp

and s is locally a fraction. That is, for each p ∈ U there must exist a neighbourhood
V ⊂ U containing p, and elements m ∈ M and f ∈ R such that for all q ∈ V , we
have f /∈ q and s(q) = m/f ∈Mq.
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4.6. Lemma. Let

F : F0
ϕ1←− F1

ϕ2←− F2 · · ·
be a complex of free S−modules and

F̃ : F̃0
ϕ̃0←− F̃1

ϕ̃2←− F̃2 · · ·

the associated complex of sheaves on XΣ. Then H̃i(F ) ∼= Hi(F̃ ).

Proof. We have the exact sequence

0→ im(ϕi+1)→ ker(ϕi)→ Hi(F )→ 0,

which gives the exact sequence

0→ ˜im(ϕi+1)→ k̃er(ϕi)→ H̃i(F )→ 0.

If we can show that the functor taking modules to sheaves commutes with the
image and kernel, then we will have

H̃i(F ) ∼= Hi(F̃ )

by the above mentioned exercise.

Fortunately, by proposition-definition 1.2 in chapter 2 of [8], we only need to show
that the pre sheaves agree on every open set U ⊂ XΣ, and we do this by looking at
the affine pieces.

For a polynomial ring R, We can show that im(ϕ̃)(U) = ĩm(ϕ)(U) for any map
ϕ : M → N of R−modules where the sheaves are constructed on Spec(R) as above.
For each prime ideal p, ϕ gives a localized map ϕ : Mp → Np given by

ϕ(m/f) = ϕ(m)/f.

The induced map on sections, ϕ̃(U) : M̃(U)→ Ñ(U), is given by

ϕ̃(U)(s) = ϕ ◦ s : U →
∐
p∈U

Np.

It is clear that ϕ ◦ s : U →
∐

p∈U(im(ϕ))p ⊂
∐

p∈U Np, so that one inclusion is
immediate.

On the other hand, suppose that we have t ∈ ĩm(ϕ)(U). Then for every p ∈ U ,
t(p) = ϕ(m)/f for some m ∈ Mp and f /∈ p. We then define s : U →

∐
p∈U Mp by

s(p) = m/f . By the local nature of t, we also have that s is locally a fraction and

hence in M̃(U). Then t = ϕ ◦ s, showing that t ∈ im(ϕ̃)(U).

Hence, for every section we have ĩm(ϕ)(U) = im(ϕ̃)(U). This shows that they are
equal as presheaves, implying they are equal as sheaves. A similar argument shows

that ker(ϕ̃) = k̃er(ϕ).

We then get the exact sequence

0→ im(ϕ̃i+1)→ ker(ϕ̃i)→ H̃i(F )→ 0,
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showing that Hi(F̃ ) = H̃i(F ) by exercise 1.6 of [8] mentioned above.
�

Corollary 3.6 from [3] shows that M̃ = 0 if and only if there is some power t such
that BtM = 0, hence we get the following:

4.7. Lemma. The complex of sheaves F̃ is exact if and only if for each i > 0 there
is some power t such that BtHi(F ) = 0.

Proof. The complex is exact if and only if Hi(F̃ ) = 0 for each i > 0. Applying
Lemma 4.6 and Corollary 3.6 from [3] shows this is equivalent to there being a power
of t such that BtHi(F ) = 0. �

Now we give a condition on modules which will guarantee that they give the same
sheaves on XΣ. For an S−module M , we define the following submodule:

ΓB(M) = {m ∈M : Btm = 0 for some t ∈ N}.
Exercise 13 from section 10.1 of [6] shows that this is indeed a submodule.

4.8. Lemma. Let M and N be two finitely generated S−modules. If

M/ΓB(M) ∼= N/ΓB(N),

then

M̃ ∼= Ñ .

Proof. We have the exact sequence

0→ ΓB(M)→M →M/ΓB(M)→ 0,

which sheafifies to the exact sequence

0→ Γ̃B(M)→ M̃ → ˜M/ΓB(M)→ 0.

Since S is Noetherian, ΓB(M) is finitely generated. Let m1, . . . ,mk be a gener-
ating set, and t1, . . . , tk be the powers such that Btimi = 0. Then setting t =
max{t1, . . . , tk} gives Btmi = 0 for all i, and hence BtΓB(M) = 0. This gives us the
exact sequence

0→ M̃ → ˜M/ΓB(M)→ 0,

showing that the sheaves are isomorphic. Similarly, we have Ñ ∼= ˜N/ΓB(N). Then

by our hypothesis (M/ΓB(M) ∼= N/ΓB(N)), we have ˜M/ΓB(M) ∼= ˜N/ΓB(N). This
gives

M̃ ∼= ˜M/ΓB(M) ∼= ˜N/ΓB(N) ∼= Ñ .

�

This leads to the following algebraic condition for a complex to be a virtual res-
olution.
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4.9. Theorem. Let M be a finitely generated S−module and

F : F0 ← F1 ← F2 · · ·

a complex of free S−modules satisfying:

(1) For each i > 0 there is some power t such that BtHi(F ) = 0,
(2) H0(F )/ΓB(H0(F )) ∼= M/ΓB(M).

Then F is a virtual resolution of M .

Proof. The first condition shows that the sequence of sheaves is exact by Lemma
4.7, and the second condition shows that

M̃ ∼= H̃0(F ) ∼= H0(F̃ ),

by Lemma 4.6 and Lemma 4.8. �

We will usually be concerned with the sheaves corresponding to B−saturated
radical homogeneous ideals, since these correspond to the closed sub-schemes of XΣ.
Moreover our main methods of producing virtual resolutions come from the minimal
free resolutions of such ideals. In this case F0 = S, and we state this as a special case.

4.10. Theorem. Suppose that

F : S
ϕ1←− F1 ← F2 · · ·

is a complex of free S−modules satisfying

(1) For each i > 0 there is some power t such that BtHi(F ) = 0,
(2) (im(ϕ1) : B∞) = (I : B∞).

Then F is a virtual resolution of S/I.

Proof. We apply Theorem 4.9. The first condition is satisfied by our hypothesis
on F . For the module S/I, we have

ΓB(S/I) = {f + I : there is some power t such that Btf ∈ I} = (I : B∞)/I.

The Third Isomorphism Theorem (Theorem 4 of section 10.2 in [6]) gives

(S/I)/(ΓB(S/I)) ∼= S/(I : B∞).

Hence condition (2) of Theorem 4.9 reduces to

S/(im(ϕ1) : B∞) ∼= S/(I : B∞),

which is satisfied by our second hypothesis.
�
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3. Virtual Resolutions of Points in a Product of Projective Spaces.

First, let us consider the simplest example of a product of projective spaces,
P1 × P1(see Example 3.1.12 in [5]. Consider the following fan:

σ10 σ00

σ11 σ01

This gives us the affine open cover

U00 = Spec(K[Sσ00 ])
∼= Spec(K[x, y]),

U10 = Spec(K[Sσ10 ])
∼= Spec(K[x−1, y]),

U11 = Spec(K[Sσ11 ])
∼= Spec(K[x−1, y−1]),

U01 = Spec(K[Sσ01 ])
∼= Spec(K[x, y−1]).

Now if U0 and U1 are the standard affine open sets covering P1 with coordinate
rings K[x] and K[x−1], then we see that Ui×Uj has the same coordinate ring as Uσij
above. Hence Uσij

∼= Ui × Uj. The gluing of these affine varieties gives us P1 × P1.
Hence, the total coordinate ring is in 4 variables,

S = K[x0, x1, y0, y1],

where the variables x0, x1 correspond to the horizontal rays, and the variables y0, y1

correspond to the vertical rays. The irrelevant ideal is then

B = 〈x0y0, x0y1, x1y0, x1y1〉 = 〈x0, x1〉 ∩ 〈y0, y1〉.

More generally (see example 2.4.8 and 3.1.12 in [5]), for Pn × Pm, we have total
coordinate ring

K[x0, . . . , xn, y0, . . . , ym],

and the irrelevant ideal is

B = 〈x0, . . . , xn〉 ∩ 〈y0, . . . , ym〉.

Example 2.4.8 and Proposition 2.4.9 in [5] shows that this generalizes to multiple
factors.
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4.11. Notation. From now on, we let

X = Pn1 × · · · × Pnr .

The total coordinate ring of X is

S = K[x01, . . . , xn11, . . . , x0r, . . . , xnrr]

which is graded by Zr with deg(xij) = ej, and the irrelevant ideal is

B =
r⋂
j=1

〈x0j, . . . , xnjj〉.

Note that if I is B−saturated, then any minimal free resolution of S/I is a virtual
resolution. Indeed, if F is the minimal free resolution, then Hi(F ) = 0 for all i ≥ 1,
and im(ϕ1) = I = (I : B∞), so the definition of a virtual resolution is a generalization
of the minimal free resolution of an ideal.

For a ∈ Nr, let Ba =
⋂r
j=1〈x0j, . . . , xnjj〉ai . The following theorem gives one

method for constructing a virtual resolution of a set of points.

4.12. Theorem. (Theorem 4.1 in [2])
Let Z ⊂ X be a set of points and I the corresponding B−saturated S ideal. There
exists a ∈ Nr with ar = 0 and the other entries sufficiently positive such that the
minimal free resolution of S/(I ∩ Ba) has length n1 + n2 + . . .+ nr, and is a virtual
resolution of S/I.

Proof. The proof that the minimal free resolution has the specified length is
given in [2].

We show that the minimal free resolution of S/(I ∩Ba) is a virtual resolution of
S/I. Let the resolution be

F : F0
ϕ1←− F1 ← F2 · · ·

Since the complex is exact, for each i ≥ 1 Hi(F ) = 0, so the first condition is satisfied
trivially. Now since the resolution is minimal, we have F0 = S and im(ϕ1) = I ∩Ba.
Let n be the product of the non-zero ai from the exponent vector a. Then for
any g ∈ B, gn ∈ Ba, so we see that Bn ⊂ Ba. Then for any f ∈ I we have
fBn ⊂ I ∩Ba. Hence I ⊂ (I ∩Ba : B∞). The other inclusion follows easily, showing
that (im(ϕ1) : B∞) = I. Hence the complex is a virtual resolution of S/I.

�

4. Examples

The following examples consider points in X = P1×P1. The total coordinate ring
is R = K[x0, x1, y0, y1] graded by Z2, and the irrelevant ideal is 〈x0, x1〉 ∩ 〈y0, y1〉.



4. EXAMPLES 33

4.13. Example. First, consider the point [1 : 0] × [1, 0] ∈ P1 × P1. The associated
B−saturated radical ideal is I = 〈x1, y1〉. Using Macaulay 2, we calculate the minimal
free resolution to be

S

(
x1 y1

)
←−−−−−−

S(−1, 0)
⊕

S(0,−1)

−y1

x1


←−−−−− S(−1,−1)← 0,

which has length two. Therefore, we could take a = (0, 0) in Theorem 4.12 to see
that this minimal free resolution is a virtual resolution of S/I of length 2.

A slightly more interesting example is to add the point [0, 1] × [0, 1]. The ideal
associated to the set of points

{[1 : 0]× [1, 0], [0, 1]× [0, 1]}
is I = 〈y0y1, x0y1, x1y0, x0x1〉, which has minimal free resolution of the form

S
ϕ1←−

S(−2, 0)
⊕

S(−1,−1)2

⊕
S(0,−2)

ϕ2←−
S(−2,−1)2

⊕
S(−1,−2)2

ϕ3←− S(−2,−2)← 0,

where
ϕ1 =

(
x0x1 x1y0 x0y1 y0y1

)
,

ϕ2 =


−y0 −y1 0 0
x0 0 0 −y1

0 x1 −y0 0
0 0 x0 x1

 ,

and

ϕ3 =


y1

−y0

−x1

x0

 .

We see this minimal free resolution is longer than the virtual resolution from
Theorem 4.12. Take a = (1, 0) and consider I ∩Ba. The minimal free resolution is

S
ϕ1←−

S(−2, 0)
⊕

S(−1,−1)2

ϕ2←− S(−2,−1)2 ← 0,

where
ϕ1 =

(
x0x1 x1y0 x0y1

)
,

and

ϕ2 =

−y0 −y1

x0 0
0 x1

 .

We can see in this case that the minimal free resolution of S/(I ∩Ba) is shorter and
thinner than the minimal free resolution of S/I.

♦
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The above example and Theorem 4.12 show how a virtual resolution can be con-
structed by eliminating the requirement that the 0′th homology be S/I, however
the complexes are still exact. The other possibility is to allow a limited amount of
homology. Theorem 1.3 and Algorithm 3.4 of [2] give a method of producing vir-
tual resolutions which are in general not exact. This method of producing virtual
resolutions involves removing summands which are generated in large enough degree
from a minimal free resolution. The algorithm is implemented in Macaulay 2 via the
package “VirtualResolutions”.

4.14. Example. (Example 4.3 of [10]) Consider the ideal of the set of points

{[1 : 1]× [1 : 4], [1 : 2]× [1 : 5], [1 : 3]× [1 : 6]}.
Macaulay 2 calculates the B−saturation of the ideal to be

I = 〈3x0y0 + x1y0 − x0y1,120y3
0 − 74y2

0y1 + 15y0y
2
1 − y3

1, 120x1y
2
0 − 34x1y0y1 − 2x0y

2
1 + 3x1y

2
1

40x2
1y0 + 6x2

0y1 − 13x0x1y1 − 3x2
1y1, 6x

3
0 − 11x2

0x1 + 6x0x
2
1 − x3

1〉.
The minimal free resolution of S/I is calculated to be

S ←

S(−1,−1)
⊕

S(−3, 0)
⊕

S(−2,−1)
⊕

S(−1,−2)
⊕

S(0,−3)

←

S(−3,−1)2

⊕
S(−2,−2)2

⊕
S(−1,−3)2

←
S(−3,−2)
⊕

S(−2,−3)
← 0.

However, if we apply the algorithm and remove the summands which are generated
in degree more than (3, 1), we get the virtual resolution

S
ϕ1←−

S(−1,−1)
⊕

S(−3, 0)
⊕

S(−2,−1)

ϕ2←− S(−3,−1)2 ← 0,

where

ϕ1 =

 x0y0 + 1/3x1y0 − 1/3x0y1

x3
0 − 11/6x2

0x1 + x0x
2
1 − 1/6x3

1

x2
1y0 + 3/20x2

0y1 − 13/40x0x1y1 − 3/40x2
1y1

T

,

and

ϕ2 =

−x2
0 + 13/6x0x1 − 31/18x2

1 −x2
1

y0 − 1/3y1 −3/20y1

20/27x1 x0 + 1/3x1.

 .

Macaulay 2 shows that (im(ϕ1) : B∞) = I and that the complex is exact so it is
indeed a virtual resolution of S/I. ♦
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