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Abstract. Our goal is to introduce the basics properties of edge and cover ideals, and

to introduce some current research themes. We also include an introduction to the
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Introduction

Monomial ideals, although intrinsically interesting, play an important role in study-
ing the connections between commutative algebra and combinatorics. Broadly speaking,
problems in combinatorics are encoded into monomial ideals, which then allow us to use
techniques and methods in commutative algebra to solve the original question. Stanley’s
proof of the Upper Bound Conjecture [59] for simplicial spheres is seen as one of the early
highlights of exploiting this connection between two fields. To bridge these two areas of
mathematics, Stanley used square-free monomial ideals.

Over the last decade or so, commutative algebraists have become interested in studying
the properties of finite simple graphs through monomial ideals. Fröberg [30], Villarreal
[63], and Simis, Vasconcelos, and Villarreal [57] were among the early pioneers in this
field. The starting point of these projects is to use the edges of a finite simple graph to
construct a monomial ideal, usually called the edge ideal, and to study the properties of
this monomial ideal using the properties of the graph, and vice versa. In these notes, we
provide an introduction to the edge ideal and the cover ideal, two monomial ideals that
can be constructed from a finite simple graph G using its edges, and discuss some current
research themes related to these ideals.

Section 1 is devoted to the basics of edge and cover ideals. We start with the definition
of these ideals, and work out some of their basic properties. One of the themes in the
study of edge and cover ideals is to build a dictionary between graph theory and commu-
tative algebra. To illustrate this dictionary, we explain how the chromatic number of a
graph is encoded algebraically. We also describe how Stanley-Reisner theory can give us
information about these ideals.

The goal of Section 2 is to introduce the technique of splitting monomial ideals. Splitting
a monomial ideal is a technique that originates in a paper of Eliahou and Kervaire [18].
Roughly speaking, a splitting of a monomial ideal allows us to describe its graded Betti
numbers in terms of the graded Betti numbers of smaller ideals. Over the last couple
of years, this method has proved useful in a number of contexts. We introduce this
machinery, and as an application, we prove Fröberg’s [30] characterization of edge ideals
with a linear resolution.

In Section 3, we look at decompositions of powers of the cover ideal. In the first part,
we show that some of the associated primes of the powers of the cover ideal correspond
to colouring information about the associated graph. In the second part, we turn our
attention to the irreducible ideals in the irreducible decomposition of the powers of cover
ideals and relate their information to colouring information about the graph. We end
with a conjecture about the persistence of associated primes for cover ideals.

At the end of these notes, we provide a brief introduction to the Macaulay 2 package
EdgeIdeals [29], written by C. Francisco, A. Hoefel, and the author. It is hoped that
this package will facilitate your own research. We have also include two tutorials that
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will allow you to start exploring edge and cover ideals using Macaulay 2. The tutorials
include a number of open problems.

When preparing these notes, I have assumed that the reader is familiar with the basics of
Stanley-Reisner ideals, minimal free graded resolutions, and associated primes of ideals.
If you need brushing up on some of these topics, I would like to point the reader to
[4, 36, 49, 54, 56, 64]. I have not assumed any previous knowledge about graph theory.
Instead, I will introduce any terms as needed. However, you may want to have a graph
theory textbook handy as you read through these notes.

Given the wealth of research on edge and cover ideals, these notes cannot do adequate
justice to this topic. For example, I had no time to look at the interesting problem of
determining when a graph is Cohen-Macaulay or sequentially Cohen-Macaulay. My hope
is to whet your appetite, and let you explore the field.

If you are interested in learning more, I would recommend that your reading list include
Villarreal’s textbook [64] (especially Chapter 6), Herzog and Hibi’s text [36] (in particular,
Chapter 9), the recent survey of Morey and Villarreal [50], and an older survey of Hà and
the author [33]. As an aide to help you develop your own projects, scattered throughout
the notes are a number of open questions. I would also encourage you to come with your
own questions; one approach is to simply browse a book on graph theory or the latest
issue of a graph theory journal and ask yourself if a particular problem or result can be
rephrased as an algebraic result. Have fun!

Acknowledgements. I would like to thank the organizers of MONICA, Anna M. Bigatti,
Philippe Gimenez, and Eduardo Sáenz-de-Cabezón, for the invitation to participate in this
conference. As well, I would like to thank all the participants for stimulating discussions
and their feedback. I would also like to thank Ben Babcock, Ashwini Bhat, Jen Biermann,
Chris Francisco, Tai Hà, Andrew Hoefel, and Ştefan Tohǎneanu for their feedback on
preliminary drafts. The author was supported in part by an NSERC Discovery Grant.

1. The basics of edge and cover ideals

In this section, we introduce edge and cover ideals. One theme in the study of these
ideals is to understand how graph theoretic invariants are encoded algebraically in these
ideals. We illustrate this theme by using the chromatic number of a graph as a case
study. Because edge and cover ideals are square-free monomial ideals, one can also apply
the theory of Stanley-Reisner ideals and simplicial complexes to study these ideals. Using
results from Stanley-Reisner theory, we identify other graph theoretic invariants encoded
in these ideals. Furthermore, we prove that the edge and cover ideals are dual to each
other with respect to Alexander duality.

1.1. Definitions. Our basic combinatorial object will be a finite simple graph. A finite
graph G is a pair G = (V (G), E(G)) where V (G) = {x1, . . . , xn} is the set of vertices of
G, and E(G) is a collection of two element subsets of V (G), usually called the edges of
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G. A finite graph is simple if we do not allow multiple edges between vertices and we do
not allow loops at vertices, i.e., an edge from a vertex xi to itself.

Example 1.1. The following pair is a finite simple graph:

G = ({x1, . . . , x5}, {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x5, x1}}).

It is standard practise to represent a graph as a figure. More precisely, we introduce a
node for each vertex x ∈ V (G). We then join two vertices xi and xj by a line segment if
and only if {xi, xj} ∈ E(G). Thus, the above graph G can be represented as the following
figure:

x3

x2

x1

x5

x4

The figure below is not a finite simple graph since it has a loop at the vertex x1, and three
edges from x4 to x5:

x3

x2

x1

x5

x4

Note that the above graph is sometimes called a pseudo-graph or multi-graph. We will
not consider graphs of this type.

Convention 1.2. Throughout these notes, we will assume that G is a finite simple graph,
so we will simply call G a graph, and drop the adjectives finite and simple.

We can study graphs using monomial ideals in a suitable polynomial ring. Suppose
we are given a graph G = (V (G), E(G)) where V (G) = {x1, . . . , xn}. We identify the
vertices of the graph with the variables in the polynomial ring R = k[x1, . . . , xn]. Here, k
is some fixed field. (The results of this section are independent of the characteristic of k;
however, see Example 2.2 for a result that depends upon char(k).)

The graph G is then used to construct two monomial ideals:

Definition 1.3. Let G = (V (G), E(G)) be a graph. The edge ideal associated to G is the
monomial ideal

I(G) = 〈xixj | {xi, xj} ∈ E(G)〉 ⊆ R = k[x1, . . . , xn].

The cover ideal is the monomial ideal

J(G) =
⋂

{xi,xj}∈E(G)

〈xi, xj〉 ⊆ R = k[x1, . . . , xn].
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Example 1.4. Let G be as in Example 1.1. The edge and cover ideals are, respectively:

I(G) = 〈x1x2, x2x3, x3x4, x4x5, x5x1〉
J(G) = 〈x1, x2〉 ∩ 〈x2, x3〉 ∩ 〈x3, x4〉 ∩ 〈x4, x5〉 ∩ 〈x1, x5〉

= 〈x1x3x4, x1x3x5, x1x2x4, x2x4x5, x2x3x5〉.

Remark 1.5. The term edge ideal originated in a paper of Villarreal [63]. The ideal J(G)
is called the cover ideal because its minimal generators correspond to the minimal vertex
covers of the graph G. We will make this statement precise later in this section.

Observe that we can reverse the construction of Definition 1.3 in the following sense.
If I is any quadratic square-free monomial ideal in R = k[x1, . . . , xn] of the form I =
〈x1,1x1,2, . . . , xs,1xs,2〉 we make the following association:

I 7→ G = ({x1, . . . , xn}, {{x1,1, x1,2}, . . . , {xs,1, xs,2}}).

Similarly, if we are given any square-free unmixed height two monomial ideal, i.e., J =⋂t
i=1〈xi,1, xi,2〉, we identify J with the graph:

J 7→ G = ({x1, . . . , xn}, {{xi,1, xi,2} | i = 1, . . . , t}).

So, the study of edge and cover ideals hopes to exploit these two one-to-one correspon-
dences:

EDGE IDEALS
(quadratic square-free

monomial ideals)

 1−1←→


FINITE
SIMPLE
GRAPHS

 1−1←→


COVER IDEALS
(height two unmixed
square-free monomial

ideals)

 .

Remark 1.6. We have simplified this discussion slightly since one must take into account
isolated vertices, or variables of R that do not appear in I or J . We gloss over this
technicality here to simplify our discussion.

Given these two one-to-one correspondences, it makes sense to ask:

Question 1.7. How do the invariants of finite simple graphs relate to the invariants of
the edge and cover ideals, and vice versa?

By answering this broad question about the dictionary between two fields, i.e., graph
theory and commutative algebra, we may be able to import results from graph theory to
help prove algebraic results, and at the same time, export algebraic results to prove graph
theory results.

1.2. Colouring Graphs: an illustration of the dictionary. To give you a hint of the
connection between graph theory and commutative algebra, we will examine the problem
of colouring a graph.
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Definition 1.8. A colouring1 of a graph G is an assignment of a colour to each vertex
so that adjacent vertices, i.e., vertices joined by an edge receive different colours. The
chromatic number of a graph G, denoted χ(G), is the minimum number of colours needed
to colour G.

To illustrate this definition, we first introduce two families of graphs that will frequently
appear within these notes.

Definition 1.9. The clique of size n with n ≥ 2, denoted Kn, is the graph with vertex
set V (G) = {x1, . . . , xn} and edge set E(G) = {{xi, xj} | 1 ≤ i < j ≤ n}. We sometimes
view an isolated vertex (a vertex with no edges) as a clique of size 1, and denote it by K1.

The cycle of size n with n ≥ 3, denoted Cn, is the graph with vertex set V (G) =
{x1, . . . , xn} and edge set E(G) = {{x1, x2}, {x2, x3}, {x3, x4}, . . . , {xn−1, xn}, {xn, x1}}.

Example 1.10. The graphs below are K3, K4, and K5:

x1

x2

x3 x1

x2x3

x4 x3

x2

x1

x5

x4

The graphs below are C3, C4, and C5:

x1

x2

x3 x1

x2x3

x4 x3

x2

x1

x5

x4

Example 1.11. The chromatic number of C5 is three since we can colour it as follows:

B

R

B

R

G

where R represents red, G represent green, and B represents blue.

For both families of graphs, we can easily compute χ(G):

Lemma 1.12. If G = Kn, then χ(Kn) = n. If G = Cn, then

χ(Cn) =

{
2 if n is even
3 if n is odd.

Proof. (Exercise) �

1I’m using the British-Canadian spelling of colouring, but if you prefer, you can call it a coloring. To

be consistent, I’ll also use neighbour.
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Application 1.13. Colouring is a core topic in graph theory; every introductory textbook
on graph theory will devote at least one chapter to the topic. It has many practical
applications, including the problem of scheduling. To see the connection, suppose we
want to schedule a set of exams. Represent each exam by a vertex, and join two vertices
if there is a student who must write both exams. For example, suppose we end up with
the graph:

Exam 1

Exam 2

Exam 3

Exam 4

Exam 5

Exam 6

We can colour this graph with three colours (e.g., colour Exam 1 and Exam 3 the same,
Exams 5 and 6 are coloured the same, and Exams 2 and 4 are coloured the same). Exams
with the same colour can be scheduled at the same time since a student can only take
one exam of each colour. The chromatic number of this graph is the smallest number of
distinct time slots needed to offer all exams.

Definition 1.14. A subset W ⊆ V (G) is called an independent set if no edge of G has
both endpoints in W . A maximal independent set is an independent set that is maximal
under inclusion.

We make an important observation about a colouring of a graph. Suppose that G has
been given a colouring. Then all the vertices of the same colour must form an independent
set. This observation leads to the following lemma:

Lemma 1.15. Let G be a graph. Then χ(G) ≤ d if and only if V (G) = C1 ∪ · · · ∪Cd can
be partitioned into d independent sets.

Proof. (Exercise) �

There is a concept dual to an independent set:

Definition 1.16. A subset W ⊆ V (G) is a vertex cover if W ∩ e 6= ∅ for all e ∈ E(G). A
vertex cover W is a minimal vertex cover if no proper subset of W is a vertex cover.

From the definitions, one can easily prove the following statement:

Lemma 1.17. A subset Y ⊆ V (G) is an independent set if and only if V (G) \ Y is a
vertex cover. In particular, Y is a maximal independent set if and only if V (G) \ Y is a
minimal vertex cover.

Proof. (Exercise) �
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Example 1.18. Consider the graph C5 of Example 1.1. In this graph, Y = {x2, x5} is
an independent set. The complement of Y is the set V (G) \ Y = {x1, x3, x4}. This set is
a vertex cover because every edge of C5 has at least one of its endpoints in {x1, x3, x4}.

We will now describe how the invariant χ(G) arises in an algebraic context.

Notation 1.19. If W ⊆ V (G), then

xW :=
∏
xi∈W

xi.

We first require a lemma that justifies the name cover ideal:

Lemma 1.20. Let G be a graph with cover ideal J(G). Then

J(G) = 〈xW | W ⊆ V (G) is a minimal vertex cover of G〉.

Proof. Let L = 〈xW | W ⊆ V (G) is a minimal vertex cover of G〉.
Let xW be a generator of L with W a minimal vertex cover. Then, for every edge

e = {xi, xj} ∈ E(G), we have W ∩ e 6= ∅. So, either xi ∈ W or xj ∈ W . Consequently,
either xi|xW or xj|xW , whence xW ∈ 〈xi, xj〉. Since e is arbitrary, we have

xW ∈
⋂

{xi,xj}∈E(G)

〈xi, xj〉 = J(G).

Conversely, let m ∈ J(G) be any minimal generator. Note that m must be square-
free since J(G) is the intersection of finitely many square-free monomial ideals. So m =
xi1 · · ·xir . Let W = {xi1 , . . . , xir}. Since m ∈ 〈xi, xj〉 for each each {xi, xj} ∈ E(G) either
xi|m or xj|m, and thus, xi ∈ W or xj ∈ W . Thus W is a vertex cover. Let W ′ ⊆ W be a
minimal vertex cover. Because xW ′ ∈ L and xW ′ divides m = xW , we have m ∈ L. �

Theorem 1.21 ([25, Theorem 3.2]). Let G be a graph with V (G) = {x1, . . . , xn}. If J(G)
is the cover ideal, then

χ(G) = min{d | xd−1
V (G) = (x1 · · ·xn)d−1 ∈ J(G)d}.

Proof. Let J = J(G). We first want to show that if χ(G) = d, then (x1 · · · xn)d−1 ∈ Jd.
Because χ(G) = d, we have a partition VG = C1 ∪ · · · ∪ Cd into independent sets (see

Lemma 1.15). Because each Ci is an independent set, the set Wi = V (G) \ Ci is vertex
cover, and thus xWi

∈ J . So, xW1 · · ·xWd
∈ Jd. Each xi ∈ V (G) is in exactly one Ci, so

each xi is in exactly d− 1 of the Wj. Thus xW1 · · ·xWd
= (x1 · · ·xn)d−1 ∈ Jd. This shows

χ(G) ≥ min{d | xd−1
V (G) = (x1 · · ·xn)d−1 ∈ Jd}.

Conversely, let (x1 · · ·xn)d−1 ∈ Jd. So, we can find d minimal vertex covers W1, . . . ,Wd

such that

(x1 · · ·xn)d−1 = xW1 · · ·xWd
M ∈ Jd
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where M is some monomial (possibly M = 1). Set

C1 = V (G) \W1

C2 = (V (G) \W2) \ C1

C3 = (V (G) \W3) \ (C1 ∪ C2)
...

Cd = (V (G) \Wd) \ (C1 ∪ · · · ∪ Cd−1).

Then C1 ∪ · · · ∪ Cd is a colouring of G. To see this, first note that each Ci is an
independent subset because it is a subset of V (G) \Wi. By construction, for each i 6= j,
we have Ci∩Cj = ∅. Finally, for any xj ∈ V (G), there is at least one Wi such that xj 6∈ Wi.
Indeed, if xj ∈ Wi for all i, then xdj |xW1 · · ·xWd

M = (x1 · · ·xn)d−1, a contradiction. So,
xj ∈ Ci = V (G) \Wi or xj ∈ C1 ∪ C2 ∪ · · · ∪ Ci−1.

Thus χ(G) ≤ min{d | xd−1
V (G) = (x1 · · ·xn)d−1 ∈ Jd}, as desired. �

Example 1.22. Let G = C5. Then a colouring of G is given by

V (G) = {x1, x3}︸ ︷︷ ︸
Red

∪{x2, x4}︸ ︷︷ ︸
Blue

∪ {x5}︸︷︷︸
Green

.

Since {x1, x3}, {x2, x4}, and {x5} are independent sets, the sets {x2, x4, x5}, {x1, x3, x5}
and {x1, x2, x3, x4} are vertex covers of G. So x2x4x5, x1x3x5, and x1x2x3x4 ∈ J(G). It
follows that

(x2x4x5)(x1x3x5)(x1x2x3x4) = (x1x2x3x4x5)2 ∈ J(G)3.

Remark 1.23. Theorem 1.21 allows us to compute χ(G) without finding an explicit
colouring of G. In the Macaulay2 [31] package EdgeIdeals [29], this formula is used to
find the chromatic number. Although we have a simple algorithm for finding the chromatic
number, the bottleneck in the computation is finding J(G). As proved in Lemma 1.20,
finding the generators of J(G) is equivalent to finding all the vertex covers of G. However,
this is an NP problem!

In graph theory, there is also a notion of a b-fold chromatic number which we can also
compute algebraically.

Definition 1.24. A b-fold colouring of a graph G is an assignment to each vertex a set
of b distinct colours such that adjacent vertices receive disjoint sets of colours. The b-fold
chromatic number of G, denoted χb(G), is the minimal number of colours needed in a
b-fold colouring of G.
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Example 1.25. The 2-fold chromatic number of C5 is five since we can colour it as
follows:

(B,R)

(G,O)

(Y,B)

(R,G)

(O,Y)

where R represents red, G represent green, B represents blue, O represents orange, and
Y represents yellow.

When b = 1, then χb(G) = χ(G). By adapting the proof of Theorem 1.21, we can
derive a much more general result. See the paper [25] for a proof.

Theorem 1.26. Let G be a graph with V (G) = {x1, . . . , xn}. If J(G) is the cover ideal,
then

χb(G) = min{d | xd−bV (G) = (x1 · · ·xn)d−b ∈ J(G)d}.

Before we turn to the next section, we will end with an open question. The fractional
chromatic number of a graph G, denoted χf (G), is defined to be

χf (G) = lim
b→∞

χb(G)

b
.

Then it is known that there exists some integer b such that χf (G) = χb(G)
b

. Since we can
compute χb(G), it is natural to ask:

Question 1.27. Can we compute χf (G) algebraically?

If you are interested in the fractional chromatic number, see the book of Scheinermann
and Ullman [55]2

1.3. Associated Simplicial Complexes. Because I(G) and J(G) are square-free mono-
mial ideals, we can use the Stanley-Reisner construction3 to associate to each ideal a
simplicial complex. These simplicial complexes are sometimes useful in our study of the
invariants of G using the algebraic properties of I(G) and J(G). We quickly discuss the
connection.

Definition 1.28. A simplicial complex on V = {x1, . . . , xn} is a subset ∆ of the power
set of V such that

(i) if F ∈ ∆, and G ⊆ F , then G ∈ ∆.
(ii) {xi} ∈ ∆ for all i.

One can then associate to ∆ a square-free monomial ideal in the ring R = k[x1, . . . , xn]:

2Although the book is out-of-print, you can have a free electronic copy if you send the authors a

postcard; see http://www.ams.jhu.edu/∼ers/fgt/ for details.
3For a refresher on Stanley-Reisner rings, see either Stanley [58] or Bruns and Herzog [4].



EDGE AND COVER IDEALS 11

Definition 1.29. The Stanley-Reisner ideal associated to a simplicial complex ∆ is the
square-free monomial ideal

I∆ = 〈xW | W 6∈ ∆〉.

Notice that this operation can be reversed. That is, if I is a square-free monomial ideal
in R, we can associate to I the simplicial complex

∆(I) = {W ⊆ V | xW 6∈ I and xW square-free}.

Using some well-known results from Stanley-Reisner theory, we can see how some of the
invariants of G are encoded into I(G) and J(G).

Definition 1.30. Let G be a graph. The independence complex of G is the simplicial
complex defined by

∆(G) = {W ⊆ V (G) | W is an independent set}.

The following lemma is then a consequence of the definitions:

Lemma 1.31. Let G a graph with associated simplicial complex ∆(G). Then

I(G) = I∆(G).

Proof. Let ∆ be the simplicial complex associated to I(G). Then

∆ = {W ⊆ V (G) | xW 6∈ I(G)}
= {W ⊆ V (G) | for each {xi, xj} ∈ E(G), xixj - xW}
= {W ⊆ V (G) | no subset of W is an edge} = ∆(G).

�

Definition 1.32. For a graph G, let

α(G) = max{|W | | W is a maximal independent set}.

Recall that elements of a simplicial complex ∆ are called faces, and that if F ∈ ∆,
then dimF = |F |−1. Furthermore, we have dim ∆ = maxF∈∆{dimF}. Putting together
some of the above pieces gives us:

Theorem 1.33. For a graph G,

dimR/I(G) = α(G).

Proof. For any simplicial complex ∆, we have dimR/I∆ = dim ∆ + 1 (see, for example,
Theorem 1.3 in Chapter 2 of [58]). So,

dimR/I(G) = dimR/I∆(G) = dim ∆(G) + 1 = α(G)− 1 + 1 = α(G).

�
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For any simplicial complex ∆, the primary decomposition of I∆ can be described in
terms of the facets of ∆. Recall that F ∈ ∆ is a facet if F is a face that is maximal under
inclusion. For each facet F , let

PF = 〈xi | xi 6∈ F 〉.

Theorem 1.34. Let ∆ be a simplicial complex with facets F1, . . . , Ft. Then

I∆ = PF1 ∩ PF2 ∩ · · · ∩ PFt .

Proof. For one proof, see [36, Lemma 1.5.4]. �

We now apply the above result to the simplicial complex ∆(G). The facets of ∆(G)
are the maximal independent sets of G. So, if F ∈ ∆(G) is a facet,

PF = 〈xi | xi 6∈ F 〉 = 〈xi | xi ∈ V (G) \ F 〉.

But V (G) \ F will be a minimal vertex cover of G. Hence, we have

Corollary 1.35. Let W1, . . . ,Wt be the minimal vertex covers of G, and set 〈Wi〉 =
〈xj | xj ∈ Wi〉. Then

I(G) = 〈W1〉 ∩ · · · ∩ 〈Wt〉.

Example 1.36. Consider again the graph C5. Then

I(C5) = 〈x1, x3, x4〉 ∩ 〈x1, x3, x5〉 ∩ 〈x2, x4, x5〉 ∩ 〈x2, x3, x5〉 ∩ 〈x1, x2, x4〉.

As a consequence of Corollary 1.35, we get an immediate connection between the ideals
I(G) and J(G). First, we recall the following important notion:

Definition 1.37. Let I be a square-free monomial ideal with primary decomposition

I = 〈x1,1, x1,2, . . . , x1,s1〉 ∩ 〈x2,1, x2,2, . . . , x2,s2〉 ∩ · · · ∩ 〈xt,1, x1,2, . . . , xt,st〉.

The Alexander dual of I, denoted I∨, is the square-free monomial ideal

I∨ = 〈x1,1x1,2 · · ·x1,s1 , x2,1x2,2 · · · x2,s2 , . . . , xt,1xt,2 · · ·xt,st〉.

Corollary 1.38. Let G be a graph. Then I(G)∨ = J(G).

Example 1.39. In the previous example, we showed that

I(C5) = 〈x1, x3, x4〉 ∩ 〈x1, x3, x5〉 ∩ 〈x2, x4, x5〉 ∩ 〈x2, x3, x5〉 ∩ 〈x1, x2, x4〉.

So I(C5)∨ = J(G) = 〈x1x3x4, x1x3x5, x2x4x5, x2x3x5, x1x2x4〉.
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1.4. Additional constructions. In this section, we have seen two ways to associate to
a graph G a monomial ideal. However, these are not the only such constructions. We
leave off with two additional constructions and some references.

Construction 1.40 (Path Ideals). A path of length t in a graph G is a set of t distinct
vertices {xi1 , . . . , xit} such that {xij , xij+1

} ∈ E(G) for j = 1, . . . , t− 1. The path ideal of
length of t of G, denoted It(G) is the monomial ideal

It(G) = 〈xi1 · · ·xit | {xi1 , . . . , xit} is a path of length t〉.
Observe that when t = 2, a path of length 2 is simply an edge, so I2(G) is the edge ideal
of G. This construction is one way in which we can extend the construction of edge ideals.

Path ideals were first introduced by Conca and De Negri [9]. Further properties have
been developed by He and Van Tuyl [35], Bouchat, Hà, and O’Keefe [3], and Alilooee and
Faridi [1].

Construction 1.41 (Edge and cover ideals of hypergraphs). Our second construction
works with a generalization of graphs. Finite simple graphs can be viewed as a special
case of a hypergraph. We first recall this definition. Let X = {x1, . . . , xn} be a finite set,
and let E = {E1, . . . , Es} be a family of distinct subsets of X . The pair H = (X , E) is
called a hypergraph if Ei 6= ∅ for each i. The elements of X are called the vertices, while the
elements of E are called the edges of H. A hypergraph H is simple if: (1) H has no loops,
i.e., |E| ≥ 2 for all E ∈ E , and (2) H has no multiple edges, i.e., whenever Ei, Ej ∈ E and
Ei ⊆ Ej, then i = j. A simple hypergraph is sometimes called a clutter. Notice that a
hypergraph generalizes the classical notion of a graph; a graph is a hypergraph for which
every E ∈ E has cardinality two.

We can then extend the construction of edge and cover ideals to hypergraphs. The edge
ideal of H is the ideal

I(H) =

〈
xE =

∏
x∈E

x

∣∣∣∣∣ E ∈ E
〉
⊆ R = k[x1, . . . , xn].

The cover ideal of H is then defined by:

J(H) =
⋂
E∈E

〈x | x ∈ E〉.

The advantage of this construction is that it gives us a one-to-one correspondence
between all square-free monomial ideals and all hypergraphs. (Again, I’m glossing over
some details about the isolated vertices.) Properties of these ideals have been studied
by Emtander [19], Francisco, Hà, and Van Tuyl [25], Hà and Van Tuyl [32] and Morey,
Reyes, and Villarreal [51], among others. These ideals have also been called facet ideals;
see, for example, Faridi [21].

These constructions are simply the tip of the iceberg. One can make edge rings (see
Villarreal [64]) or binomial edge ideals (see Herzog, et al. [37]). Each construction has its
own advantage. We end with a very open ended question:
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Question 1.42. Find a new way to associate an algebraic object to a graph. What results
can you prove with your correspondence?

2. Splitting monomial ideals and Fröberg’s Theorem

Let I be a homogeneous ideal in R = k[x1, . . . , xn]. Suppose that the graded minimal
free resolution4 of I is given by

0→
⊕
j

R(−j)βl,j(I) → · · · →
⊕
j

R(−j)β1,j(I) →
⊕
j

R(−j)β0,j(I) → I → 0.

Here, l ≤ n, and βi,j(I) is the (i, j)th graded Betti number of I. We also let R(−j) denote
the polynomial ring shifted in degree j.

An important topic in commutative algebra is the study of graded Betti numbers of an
ideal. Since all monomial ideals are homogeneous, it makes sense to ask about the Betti
numbers of edge and cover ideals. In fact, approaching this topic, we can hope:

Dream 2.1. Describe the graded Betti numbers of I(G) and J(G) using only the properties
of the graph G.

Unfortunately, we have to call this goal a dream; in reality there exist graphs G where
the graded Betti numbers of I(G) depend upon the characteristic of the field k used in
the definition of R = k[x1, . . . , xn].

Example 2.2. Katzman [43] studied how the characteristic of the field affects the graded
Betti numbers of I(G). In particular, he showed that the graph G with vertex set V (G) =
{x1, x2, . . . , x11} and edge set

E(G) = {x1x2, x1x6, x1x7, x1x9, x2x6, x2x8, x2x10, x3x4, x3x5, x3x7, x3x10, x4x5,

x4x6, x4x11, x5x8, x5x9, x6x11, x7x9, x7x10, x8x9, x8x10, x8x11, x10x11}.

has the property that the Betti numbers of I(G) when char(k) = 2 do not agree with
the Betti numbers of I(G) when char(k) 6= 2. Moreover, this graph is the smallest such
example, where by smallest we mean that no graph on 10 or less vertices has this feature.
Also see the paper of Dalili and Kummini [13] which also studies how the graded Betti
numbers of an edge ideal depend upon the characteristic of the field.

Remark 2.3. If you are familiar with Hochster’s Formula (see, for example, [49, Corollary
5.12]), then it is well known that the graded Betti numbers of a square-free monomial
ideal may depend upon the characteristic of the field. Hochster’s Formula shows that
the graded Betti numbers of an arbitrary monomial ideal can be computed using reduced
simplicial homology, which requires information about the field k. However, there are
many families of monomial ideals where the Betti numbers are independent of the field;
to ask if this fact also applies to edge ideals is a legitimate question that turns out to be
false as shown in the previous example.

4If you are not familiar with this notion, see Peeva [54].
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As an aside, if we take the cover ideal J(G) of the graph G in Example 2.2, we find an
example of a cover ideal whose Betti numbers also depend upon the char(k) (the Betti
numbers of J(G) are different if char(k) = 2). To the best of my knowledge, this is the
smallest such example. I will leave this as a question:

Question 2.4. What is the smallest graph G which has the property that the Betti numbers
of J(G), the cover ideal, depend upon the characteristic?

Although Dream 2.1 cannot be realized, we can still ask if some special types of resolu-
tions only depend upon G or if some homological invariants encoded into the resolution
only depend upon G. We shall focus on linear resolutions and the regularity of an ideal.

Definition 2.5. Let I be a homogeneous ideal generated in degree d. Then I has a linear
resolution if βi,i+j(I) = 0 for all j 6= d.

Another important invariant related to an ideal is the notion of regularity.

Definition 2.6. The Castelnuovo-Mumford regularity (or simply, regularity) of an ideal
I is

reg(I) = max{j − i | βi,j(I) 6= 0}.

These two notions are linked:

Lemma 2.7. Let I be a homogeneous ideal generated in degree d. Then I has a linear
resolution if and only if reg(I) = d.

Proof. (Exercise) �

Example 2.8. Consider the edge ideal of C5, i.e., I(C5) = 〈x1x2, x2x3, x3x4, x4x5, x5x1〉.
The graded minimal free resolution of I(C5) is then given by

0→ R(−5)→ R5(−3)→ R5(−2)→ I(C5)→ 0.

So, β2,5(I) = 1, β1,3(I) = 5, and β0,2(I) = 5. Then

reg(I(C5)) = max{2− 0, 3− 1, 5− 2} = 3.

Because I(C5) is generated in degree 2, and reg(I(C5)) > 2, this ideal does not have a
linear resolution.

Although Dream 2.1 cannot be answered, perhaps we can answer the following question:

Question 2.9. Which edge ideals have a linear resolution? Or equivalently, which edge
ideals have reg(I(G)) = 2?

This question was first answered by Fröberg [30]. To give the answer, we need some
terminology from graph theory.
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Definition 2.10. A cycle of length t, denoted (x1x2 · · · xtx1) is a set of vertices of G
such that {x1, x2}, {x2, x3}, . . . , {xt, x1} ∈ E(G). A chord is an edge joining nonadjacent
vertices in a cycle. A minimal cycle is a cycle with no chords. A chordal graph is a graph
where all the minimal cycles have length three.

Definition 2.11. If G = (V (G), E(G)) is a graph, the complementary graph of G, denoted
Gc, is the graph Gc = (V (G), E(Gc)) where

E(Gc) = {{xi, xj} | {xi, xj} 6∈ E(G)}.

Example 2.12. Consider the following three graphs:

x3

x2

x1

x5

x4 x3

x2

x1

x5

x4 x3

x2

x1

x5

x4

The graph on the left is simply C5, the cycle of length 5. The second graph has a chord
between x1 and x3. Note that (x1x2x3x4x5x1) is still a cycle of length 5; however, it is no
longer a minimal cycle. The second graph has two minimal cycles, i.e., (x1x2x3x1) and
(x1x3x4x5x1). The graph on the right is a chordal graph because all the minimal cycles
have length three.

The complements of the above three graphs are, respectively:

x3

x2

x1

x5

x4 x3

x2

x1

x5

x4 x3

x2

x1

x5

x4

Theorem 2.13 (Fröberg’s Theorem [30]). Let G be a graph. Then I(G) has a linear
resolution if and only if Gc is a chordal graph.

Example 2.14. If G = C5, then Gc is not a chordal graph, so I(G) will not have a linear
resolution (as we already observed).

Fröberg’s Theorem is an important result in the study of edge ideals. There are a
number of different proofs of this pivotal result. Besides Fröberg’s original paper, you can
find different proofs in Dochtermann and Engström [15], Eisenbud, et al. [17], Herzog
and Hibi [36], and Nevo [52]. We will introduce a technique called splitting that enables
us to derive some information about the Betti numbers of ideals. As an application, we
will show how to use this technique to prove Fröberg’s Theorem.

2.1. Splitting Monomial Ideals. Let I be a monomial ideal, and let G(I) = {m1, . . . ,mr}
denote the set of monomial minimal generators of I. Suppose we partition G(I) into two
sets, i.e.,

G(I) = {m1, . . . ,ms} ∪ {ms+1, . . . ,mr} = G(J) ∪ G(K).

Let J = 〈m1, . . . ,ms〉 and K = 〈ms+1, . . . ,mr〉. Note that I = J +K.
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We then have a short exact sequence:

0→ J ∩K → J ⊕K → J +K = I → 0.

If we assume that we are given graded minimal free resolutions of J ∩K, J , and K, then
we can use the mapping cone construction5 to build a graded resolution of I.

To make this more precise, suppose that we are given the graded minimal free resolu-
tions:

0→ Fl1 → Fl1−1 → · · · → F1 → F0 → J ∩K → 0,

0→ Gl2 → Gl2−1 → · · · → G1 → G0 → J → 0,

and

0→ Hl3 → Hl3−1 → · · · → H1 → H0 → K → 0.

Note that Fi =
⊕

j R
βi,j(J∩K)(−j), and similarly for Gi and Hi. The mapping cone

construction then implies that we can construct the following graded resolution from the
above three resolutions:

· · · → G2 ⊕H2 ⊕ F1 → G1 ⊕H1 ⊕ F0 → G0 ⊕H0 → I → 0.

What is important to notice is that this resolution may or may not be a minimal resolution.

Because the Betti numbers of I can only be smaller than the ones given in the above
resolution, we always have the following inequality

βi,j(I) ≤ βi,j(J) + βi,j(K) + βi−1,j(J ∩K). (?)

We are interested in when (?) is an equality. First let us give a name to this situation.

Definition 2.15. We call I = J +K a Betti splitting if for all i, j ≥ 0,

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K).

At first glance, we have no evidence that a Betti splitting should even exist. Let us
turn to an example.

Example 2.16. We return to our favourite example: G = C5. For this case, I(C5) =
〈x1x2, x2x3, x3x4, x4x5, x5x1〉. We partition the generators of I(G) as follows:

J = 〈x1x2, x5x1〉 and K = 〈x2x3, x3x4, x4x5〉.

Then a simple computation will show that J ∩K = 〈x1x4x5, x1x2x3〉. We now take the
minimal graded free resolutions of J , K, and J ∩K:

0→ R(−5)→ R2(−3)→ J ∩K → 0,

0→ R(−3)→ R2(−2)→ J → 0,

and

0→ R2(−3)→ R3(−2)→ K → 0.

5For more details on this construction, see [54, Chapter 1, Section 27].
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The mapping cone construction then gives us a resolution of I:

0→ R(−5)→ R2(−3)⊕R2(−3)⊕R(−3)→ R2(−2)⊕R3(−2)→ I → 0.

Note that R2(−3) ⊕ R2(−3) ⊕ R(−3) = R5(−3) and R2(−2) ⊕ R3(−2) = R5(−2). So,
the mapping cone construction actually gives the minimal free resolution of I, and thus
I = J +K is a Betti splitting.

So, Betti splittings exist! Moreover, we get a hint of why they are interesting in the
last example. We want to split the ideal I into “smaller” ideals J , K, and J ∩K, whose
resolutions are either easier to compute, or perhaps we know through induction. We can
then build the resolution of the “larger” ideal I.

What we would therefore like are conditions under which a monomial ideal I has a Betti
splitting. Splittings of monomial ideals were first introduced by Eliahou and Kervaire [18].
You are encouraged to look at their criterion for splitting a monomial ideal; we won’t
reproduce it here because it is somewhat complex and we do not need it. The notion of
a splitting was further studied by the C. Francisco, T. Hà, and the author [28]. We will
highlight one special case in which monomial ideals can be split.

Theorem 2.17 (Francisco-Hà-Van Tuyl [28]). Let I ⊆ R = k[x1, . . . , xn] be a monomial
ideal. Fix a variable xi, and set

J = 〈m ∈ G(I) | xi|m〉 and K = 〈m ∈ G(I) | xi - m〉.

(We call this an xi-partition of G(I)). If J has a linear resolution, then I = J + K is a
Betti splitting.

For any graph G, if x ∈ V (G), then the neighbours of x is the set

N(x) = {y | {x, y} ∈ E(G)}.

We can now describe one way to split the edge ideal I(G):

Corollary 2.18. Suppose that G\{x} (the graph with the vertex x and all adjacent edges
removed) is not the graph of isolated vertices. Let N(x) = {x1, . . . , xt}. Then

I(G) = 〈xx1, . . . , xxt〉+ I(G \ {x})

is a Betti splitting of I(G).

Proof. We have formed an x-partition of G(I(G)). Use Theorem 2.17 and the fact that
〈xx1, . . . , xxt〉 has a linear resolution. �

Example 2.19. Observe that Example 2.16 is explained by this corollary since I(C5) =
〈x1x2, x1x5〉+ 〈x2x3, x3x4, x4x5〉 is an x1-splitting of I(C5).

To make use of Corollary 2.18, we require information about

J ∩K = 〈xx1, . . . , xxt〉 ∩ I(G \ {x}).
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As we shall see, J ∩K is the sum of a collection of edge ideals constructed from G. We
introduce some notation. Fix a vertex x ∈ V (G), and let N(x) = {x1, . . . , xt} be the set
of neighbours of x. For i = 1, . . . , t, set

Gi = G \ (N(x) ∪N(xi)).

We also let G(x) be the graph with edge set

{{u, v} ∈ E(G) | {u, v} ∩N(x) 6= ∅, u 6= x, and v 6= x}.

Example 2.20. We illustrate this example with G = C5. Consider the vertex x1. So,
N(x1) = {x2, x5}. The graph G1 = G \ (N(x1) ∪N(x2)) is simply the isolated vertex x4,
while graph G2 = G \ (N(x1) ∪ N(x5)) is the isolated vertex x3. The graph G(x1) is the
graph:

x3

x2x5

x4

With this notation, we have

Lemma 2.21. Suppose that G \ {x} is not the graph of isolated vertices. Let N(x) =
{x1, . . . , xt}. Then

〈xx1, . . . , xxt〉 ∩ I(G \ {x}) = xI(G(x)) + xx1I(G1) + · · ·+ xxtI(Gt).

Proof. See [34]. �

Example 2.22. Continuing with the above example, the previous lemma thus implies
that if G = C5 and x = x1, then we have

〈x1x2, x1x5〉 ∩ 〈x2x3, x3x4, x4x5〉 = x1〈x2x3, x4x5〉+ x1x2〈0〉+ x1x5〈0〉 = 〈x1x2x3, x1x4x5〉.

2.2. Proof of Fröberg’s Theorem. We will use the machinery of the last section to
prove Fröberg’s Theorem (Theorem 2.13). Interestingly, once we have set up this machin-
ery, the “tough” part of the proof boils down to proving the following graph theoretic
result.

Lemma 2.23. Suppose G is a graph and x ∈ V (G) is such that G \ {x} is not the graph
of isolated vertices. Then the following are equivalent:

(i) Gc is chordal
(ii) (a) (G \ {x})c is chordal

(b) Gc
(x) is chordal

(c) Gi has no edges.

Proof. Let N(x) = {x1, . . . , xt}.
(i)⇒ (ii). Statement (a) comes from the fact that (G \ {x})c = Gc \ {x} is an induced

subgraph of Gc, and the chordal property is preserved when passing to induced subgraphs.
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We now show that (c) is true. Suppose that there is an i such that Gi = G \ (N(x) ∪
N(xi)) has an edge, say {u, v}. By construction, the edges {x, u}, {x, v}, {xi, u} and
{xi, v} do not belong to G. But since {x, xi} and {u, v} belong to G, in Gc we will have
the minimal four cycle (xuxivx), contradicting the fact that Gc is chordal. So Gi has no
edge.

Finally, we prove (b). The difficulty in proving (b) comes from the fact that Gc
(x) is not

an induced subgraph of Gc. So, suppose (z1z2 · · · zdz1) is a minimal cycle in Gc
(x).

The vertices of Gc
(x) are the same as G(x), i.e.,

V (Gc
(x)) = V (G(x)) = N(x) ∪ {y | {y, xi} ∈ E(G), xi ∈ N(x) and y 6∈ N(x)}

= N(x) ∪N ′.

We break the proof into four cases depending upon the number of vertices of the cycle
(z1 · · · zdz1) that belong to N ′.

(A) If {z1, . . . , zd} ⊆ N(x), i.e., no vertices belong to N ′, then the induced graph on Gc

on these vertices is still a cycle, so d = 3, since Gc is chordal.

(B) If exactly one of {z1, . . . , zd} is in N ′, then again the induced graph on these vertices
is still a cycle in Gc, so d = 3.

(C) If exactly two of {z1, . . . , zd} belong to N ′, say zi and zj, then since zi and zi are
not adjacent in G(x), {zi, zj} ∈ E(Gc

(x)). Because this cycle is a minimal cycle, this edge

must be part of the cycle. So, after relabelling, we can assume {z1, z2} is an edge of the
cycle, with both vertices in N ′. In Gc, the vertex x is adjacent to z1 and z2, but none of
{z3, . . . , zd}. So (z1xz2 · · · zdz1) is a cycle in Gc.

There are now two cases. If {z1, z2} ∈ E(G), then (z1xz2 · · · zdz1) is a minimal cycle
of length d + 1 in Gc. Since Gc is chordal, d + 1 = 3, so d = 2. But (z1z2z1) is not
a cycle, thus a contradiction. If {z1, z2} 6∈ E(G), then {z1, z2} is a chord in the cycle
(z1xz2 · · · zdz1) in Gc. So (z1z2 · · · zdz1) is minimal cycle in Gc, whence d = 3.

(D) If three or more vertices of the cycle belong to N ′, then since none of these vertices
of N ′ are adjacent in G(x), these vertices form a clique of size ≥ 3 in Gc

(x). A minimal
circuit contains a clique only if d = 3.

We now show (ii) ⇒ (i). By (a), if Gc has a cycle of length ≥ 4, then it must pass
through the vertex x. Let (xz1z2 · · · zdx) with d ≥ 3 be this cycle. We break this into two
cases: d ≥ 4 and d = 3.

If d ≥ 4, then {x, z2}, . . . , {x, zd−1} 6∈ E(Gc) which implies that they all belong to
E(G), and thus {z2, . . . , zd−1} ⊆ N(x). Because the edges {x, z1} and {x, zd} belong to
E(Gc), they do not belong to E(G), so z1, zd 6∈ N(x). In addition, the edges {z1, zd−1}
and {zd, z2} are not in E(Gc), so z1, z2 ∈ N ′, where N ′ is the same set introduced in the
first half of the proof. So {z1, zd} 6∈ E(G(x)), or equivalently, {z1, zd} ∈ E(Gc

(x)). Thus,

in the graph Gc
(x) we have the minimal cycle (z1z2 . . . zdz1) of length at least four, which

contradicts (b).
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Now suppose d = 3, i.e., suppose (xz1z2z3x) is a minimal four cycle in Gc. So {x, z2} and
{z1, z3} must be edges in E(G) since they are not edges of Gc. Note that z1, z3 6∈ N(x).
Because z2 ∈ N(x) and because G \ (N(x) ∪ N(z2)) has no edges, either z1 ∈ N(z2) or
z3 ∈ N(z2). Indeed, if z1, z3 6∈ N(z2), then {z1, z3} would be an edge of G\(N(x)∪N(z2)).
So, either {z1, z2} or {z2, z3} are edges of G. But this contradicts the fact that both edges
{z1, z2} and {z2, z3} belong to Gc. So Gc has no minimal cycle of length ≥ 4, and thus,
Gc must be chordal. �

We now come to the main result of the section:

Proof. (of Fröberg’s Theorem [Theorem 2.13]) We do induction on |V (G)|. If |V (G)| ≤ 3,
one simply checks all possible graphs. If G is the graph

G = ({x, x1, . . . , xt}, {{x, x1}, {x, x2}, . . . , {x, xt}})

for some t ≥ 1, then I(G) = x(x1, . . . , xt) has a linear resolution and Gc is chordal.

So, we can assume that |V (G)| ≥ 4 and that there is a vertex x ∈ V (G) such that
G \ {x} is not the graph of isolated vertices. Thus, there is a Betti splitting of I(G),
whence

βi,j(I(G)) = βi,j((xx1, . . . , xxt)) + βi,j(I(G \ {x})) + βi−1,j(L) (?)

where L = xI(G(x)) + xx1I(G1) + · · ·+ xxtI(Gt).

Let us suppose that I(G) has a linear resolution. This implies that (xx1, . . . , xxt),
I(G \ {x}), and L all have a linear resolution. By induction (G \ {x})c = Gc \ {x} is
chordal. Because L has a linear resolution, we must have L = xI(G(x)) since L cannot
have generators in degree three and four. So, that means Gi has no edges for i = 1, . . . , t.
Finally, since L = xI(G(x)) has a linear resolution, then so must I(G(x)), and thus by
induction Gc

(x) is chordal. Now apply Lemma 2.23 to deduce that Gc is chordal.

Conversely, suppose Gc is chordal. The ideal (xx1, . . . , xxt) always has a linear resolu-
tion. By Lemma 2.23, (G \ {x})c is chordal, thus by induction, I(G \ {x}) has a linear
resolution. Again, Lemma 2.23 implies that L = xI(G(x)) with Gc

(x) chordal. So, by

induction, L has linear resolution. Hence, our splitting formula (?) implies I(G) has a
linear resolution. �

Remark 2.24. Since the appearance of Fröberg’s Theorem, there have been a number of
interesting generalizations. Eisenbud, et. al [17] describe how long the resolution will stay
linear (sometimes called the N2,p property) in terms of the length of the smallest induced
cycle in the complement of G (also see Tutorial Exercise 5.2.3 and 5.2.4 at the end of
this paper for more details). Some additional results in this direction were discovered by
Fernández-Ramos and Gimenez [23]. Finding a hypergraph version of Fröberg’s Theorem
appears much more difficult, in part, because the characteristic of the field becomes
relevant. See [20, 32, 67] for some known facts about this case.

2.3. Additional comments and open questions.
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2.3.1. Splitting monomial ideals. We have only scratched the surface when it comes to
splitting ideals. As mentioned, this idea first arose in a paper of Eliahou and Kervaire
[18]. Further properties were developed by Francisco, Hà and Van Tuyl [28].

You should see splitting as a useful tool to deduce results about monomial ideals. For
example, T. Hà and myself found a number of results about the edge ideals of graphs and
hypergraphs [32, 34]. Francisco [24], Fatabbi [22] and Valla [61] have all used the splitting
of monomial ideals to study the ideal of fat points in projective space Pn. Hopefully this
section has shown you that the technique of splitting a monomial ideal should belong to
your toolbox.

There are many questions that can still be asked. In this section, we looked at one way
to split I(G). It makes sense to ask:

Question 2.25. Can we find other splittings of the edge ideal I(G)?

As an example of another answer to this question, T. Hà and myself [34] introduced
what we called edge splittings, i.e., finding conditions under which

I(G) = 〈xixj〉+ I(G \ e)
is a splitting; here G\ e is the graph G with the edge e = {xi, xj} removed. This splitting
lead to a nice recursive formula for the graded Betti of chordal graphs [32]. Hibi, Kimura,
and Murai where then able to exploit this formula in their study of f -vectors (see [39]);
this formula was also used by Kimura [45]. There may be other ways to split I(G).

As you may have noticed, we have not said much about the cover ideal J(G) in this
section. Of course, we can ask

Question 2.26. Can we find splittings of the cover ideal J(G)?

I know of only one special case where a splitting of J(G) has been found. C. Francisco,
T. Hà, and myself [28] showed that J(G) can be split if R/I(G) is Cohen-Macaulay, and
the graph G is bipartite. It would be nice to find other natural ways to split J(G).

2.3.2. Regularity of edge ideals. The regularity of ideals is a fascinating topic. Even in
the case of edge ideals, there is much more we would like to know.

As noted, Fröberg’s Theorem classifies all the edge ideals which have regularity two.
Herzog, Hibi, and Zheng have given a very interesting generalization of this theorem:

Theorem 2.27 ([38]). If Gc is chordal, then I(G)s has a linear resolution for all s ≥ 1.
In particular, reg(I(G)s) = 2s.

Nevo and Peeva [53] have made a conjecture about the regularity of edge ideals, which
generalizes this theorem.

Conjecture 2.28. Suppose that Gc has no minimal 4-cycles. Then there exists an integer
t such that I(G)s has a linear resolution for all s ≥ t. In particular, reg(I(G)s) = 2s for
s� 0.
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Nevo [52] and Hoefel and Whieldon [40] have given some partial evidence for this
conjecture. Nevo has shown that if the graph G has the property that Gc has no minimal
four cycle, and G has no claw, then I(G)2 has a linear resolution. A claw is any induced
subgraph of the form

Hoefel and Whieldon have shown that if G = Cc
n, the complement of an n-cycle, then

I(G)2 has a linear resolution, even though I(G) does not.

Finally, if you are interested in learning more about the regularity of edge ideals, the
following papers should be part of your reading list: [12, 32, 44, 46, 50, 62, 65, 66, 68].

2.3.3. Simplicial and Cellular Resolutions. We have focused primarily on the case of com-
puting graded Betti numbers (or bounding these invariants, as in the case of regularity).
There has also been some interest in describing the structure (e.g., describing the maps)
of the minimal free resolutions of edge and cover ideals.

In addition, one would like to determine if there exists a simplicial complex or cell
complex that supports a particular resolution. It is beyond the scope of these notes to
define these terms, so we point the reader to the textbook of Peeva [54]. We will simply say
that one wishes to identify topological objects that encode the structure of the minimal
free resolution of a monomial ideal.

To date, most investigations have focused on the structure of the minimal free resolu-
tions of edge ideals. Biermann [2] looked at the resolutions of I(Cc

n), i.e., the edge ideal
of the complement of cycles; Chen [6] and Horwitz [41] examined the case of ideals with
linear resolutions, i.e., ideals of the form I(G) with Gc chordal; Corso and Nagel [11, 12]
considered the case of Ferrers graph; and Dochtermann and Engström [16] studied the
cellular resolutions of co-interval graphs. I do not know of any work on the structure of
cover ideals of graphs.

3. Colouring graphs and decomposing cover ideals

Let I ⊆ R = k[x1, . . . , xn] be any ideal. Recall that a prime ideal P is associated to an
ideal I if there exists an element m ∈ R such that I : 〈m〉 = P . The set of associated
primes is then the set

Ass(I) = {P | P is associated to I}.

In the case that I is a monomial ideal, all the associated prime ideals must also be mono-
mial. Furthermore, the only prime monomial ideals are those of the form 〈xi1 , . . . , xir〉.
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In the case that I = I(G) or I = J(G), we already know the associated primes from
Section 1:

Ass(I(G)) = {〈xi1 , . . . , xit〉 | {xi1 , . . . , xir} is a minimal vertex cover}
Ass(J(G)) = {〈xi, xj〉 | {xi, xj} ∈ E(G)}.

Note that the variables that generate the associated primes of I(G) and J(G) are telling
us something about the graph G at the corresponding vertices.

Since we already know Ass(I) for I = I(G) and I = J(G), we can ask:

Problem 3.1. Suppose I = I(G) or I = J(G). Describe the sets Ass(Is) as s varies.

We will focus on the case that I = J(G). For the case of the edge ideal, see the papers
of Chen, Morey, and Sung [5] and Martinez-Bernal, Morey, and Villarreal [48].

As a teaser, we already saw in Section 1 that the chromatic number of G was encoded
into information about the powers of J(G). We will discover that additional colouring
information will be encoded into the powers of J(G).

Before proceeding, we first point out that we will be abusing notation slightly. We shall
let P denote both the monomial ideal 〈xi1 , . . . , xit〉 and the subset {xi1 , . . . , xit} ⊆ V (G).
It will be clear from the context whether P is an ideal or a subset of V (G).

In addition, we need the notion of an induced subgraph. Let P ⊆ V (G). The induced
graph of G on P is the graph

GP = (P,E(GP )) = (P, {{xi, xj} ∈ E(G) | {xi, xj} ⊆ P}).

Example 3.2. Consider the graph G = C5, and let P = {x2, x3, x5}. Then the induced
graph GP is the graph:

x3

x2x5

3.1. Powers of cover ideals: associated primes. We begin with a lemma that reduces
our problem to determining if the maximal ideal 〈x1, . . . , xn〉 is an associated prime of
J(G)s.

Lemma 3.3. The following are equivalent:

(i) P = 〈xi1 , . . . , xir〉 ∈ Ass(J(G)s) with J(G) ⊆ k[x1, . . . , xn].
(ii) P = 〈xi1 , . . . , xir〉 ∈ Ass(J(GP )s) with J(GP ) ⊆ k[xi1 , . . . , xir ].

Proof. The details are worked out in [25] using the properties of localization. �

We take a detour to introduce some more graph theory:
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Definition 3.4. A graph G is critically s-chromatic if χ(G) = s, and for every x ∈ V (G),
χ(G \ {x}) < s.

Example 3.5. Let G = Cn be the n-cycle with n odd. Then G is a critically 3-chromatic
graph since χ(G) = 3, but if we remove any vertex x, χ(G \ {x}) = 2.

Example 3.6. Let G = Kn be the clique of size n. Then G is a critically n-chromatic
graph since χ(G) = n, but if we remove any vertex x, G \ {x} = Kn−1, and thus χ(G \
{x}) = n− 1.

Remark 3.7. You should be able to convince yourself that the only critically 1-chromatic
graph is the graph of an isolated vertex, and the only critically 2-chromatic graph is K2.
The only critically 3-chromatic graphs are precisely the graphs G = Cn with n odd.
However, for s ≥ 4, there is no known classification of critically s-chromatic graphs.

As the next theorem shows, some of the associated primes of J(G)s are actually detect-
ing induced subgraphs that are critically (s+ 1)-chromatic.

Theorem 3.8. Let G be a graph and suppose P ⊆ V (G) is such that GP is critically
(s+ 1)-chromatic. Then

(1) P 6∈ Ass(J(G)d) for 1 ≤ d < s.
(2) P ∈ Ass(J(G)s).

Proof. By Lemma 3.3, we can assume that G = GP .

(1) Suppose that P ∈ Ass(J(G)d) for some d < s. Thus, there exists some monomial
m 6∈ J(G)d such that J(G)d : 〈m〉 = P .

We first note thatm|(x1 · · ·xn)d−1. If not, then there is some xi such that xdi |m. Because
xim ∈ J(G)d, we can find d vertex covers W1, . . . ,Wd such that xim = xW1 · · ·xWd

M ∈
J(G)d for some monomial M . Since xi appears at least d + 1 times on the left, it must
appear the same number of times on the right. Because each xWj

is square-free, this

means that xi|M . We then have m = xW1 · · ·xWd
(M/xi) ∈ J(G)d, contradicting the fact

that m 6∈ J(G)d.

Because J(G)d : 〈m〉 = P , we have x1m ∈ J(G)d. Note that xW = x2x3 · · ·xn ∈ J(G)
since W = {x2, . . . , xn} is a vertex cover. So, x1mxW ∈ J(G)d+1, and moreover, x1mxW
will divide (x1 · · ·xn)d. So, (x1 · · ·xn)d ∈ J(G)d+1. By Theorem 1.21, this means that
χ(G) ≤ d+ 1 < s+ 1. But this contradicts the fact that χ(G) = (s+ 1).

We now prove (2). We are given

χ(G) = min{t | (x1 · · ·xn)t−1 ∈ J(G)t} = s+ 1

so m = (x1 · · ·xn)s−1 6∈ J(G)s. In other words, we have, J(G)s : 〈m〉 ( 〈1〉, and hence
J(G)s : 〈m〉 ⊆ 〈x1, . . . , xn〉. We will now show that J(G)s : 〈m〉 ⊇ 〈x1, . . . , xn〉; the
conclusion will then follow from this fact.

Since G is critically (s+ 1)-chromatic, for each xi ∈ V (G), χ(G \ {xi}) = s. Let

V (G \ {xi}) = C1 ∪ · · · ∪ Cs
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be the s colouring of V (G \ {xi}). Then

V (G) = C1 ∪ · · · ∪ Cs ∪ {xi}
is an (s+ 1)-colouring of G.

For j = 1, . . . , s, set

Wj = C1 ∪ · · · ∪ Ĉj ∪ · · · ∪ Cs ∪ {xi}.
Each Wj is a vertex cover, so xWj

∈ J(G). Thus

s∏
j=1

xWj
∈ J(G)s.

But
∏s

j=1 xWj
= (x1 · · · xn)s−1xi. Thus, xi ∈ J(G)s : 〈m〉. This is true for each xi ∈ V (G),

whence 〈x1, . . . , xn〉 ⊆ J(G)s : 〈m〉 ⊆ 〈x1, . . . , xn〉, as desired. �

Remark 3.9. It is believed (see Section 3.3 for more details) that Theorem 3.8 (2) can
be strengthened to (2′) P ∈ Ass(J(G)d) for all d ≥ s.

Example 3.10. We consider the following graph

x3

x2

x1

x5

x4

x6

Note that the induced graph on {x1, x2, x6} is a K3 (and C3), a critically 3-chromatic
graph. So P = 〈x1, x2, x6〉 is in Ass(J(G)2), but not in Ass(J(G)). Similarly, since the
induced graph on {x1, x2, x3, x4, x5} is a C5, we will have 〈x1, x2, x3, x4, x5〉 ∈ Ass(J(G)2).

When s = 2, we can find a converse of Theorem 3.8. In fact, we can give a complete
characterization of the associated primes of J(G)2; this result first appeared in [27].

Theorem 3.11. Let G be a graph. A prime ideal P = 〈xi1 , . . . , xit〉 ∈ Ass(J(G)2), if and
only if:

(1) P = 〈xi1 , xi2〉, and {xi1 , xi2} ∈ E(G), or
(2) t is odd, and the induced graph on {xi1 , xi2 , . . . , xit} is an induced cycle of G.

Example 3.12. By Theorem 3.11, we can write out all the elements of Ass(J(G)2) for
the graph G of Example 3.10:

Ass(J(G)2) = {〈x1, x2〉, 〈x2, x3〉, · · · , 〈x3, x6〉, 〈x1, x2, x6〉, 〈x2, x3, x6〉,
〈x1, x2, x3, x4, x5〉, 〈x1, x6, x3, x4, x5〉}

Remark 3.13. By Theorem 3.11, the associated primes of J(G)2 are related to the odd
induced cycles in the graph. This gives a method to identify all the odd induced cycles in
a graph; in fact, this is the procedure used in the Macaulay 2 EdgeIdeals package. Since
odd induced graphs play an important role in the classification of perfect graphs (see [7]),
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we can exploit the associated primes of J(G)2 to determine if a graph is perfect. Again,
see [27] for all the details.

Unfortunately, the converse of Theorem 3.8 is false in general; that is, if P ∈ Ass(J(G)s),
but P 6∈ Ass(J(G)d) with 1 ≤ d < s, then the graph GP is not necessarily a critically
(s+ 1)-chromatic graph.

Example 3.14. If we consider the graph of Example 3.10, then P = 〈x1, x2, x3, x4, x5, x6〉 ∈
Ass(J(G)3) but not in Ass(J(G)) or Ass(J(G)2). However, the graph G = GP is not crit-
ically 4-chromatic. In fact, χ(G) = 3.

What is happening here is that the colouring information in the associated primes is
too “crude”. We need to decompose the ideal J(G)s differently to extract the colouring
information. The ideal P = 〈x1, x2, x3, x4, x5, x6〉 ∈ Ass(J(G)3) in the above example does
come from a critically 4-chromatic graph, but it “lives” in a larger graph constructed from
G. We expand upon this idea in the next section.

3.2. Powers of cover ideals: irreducible decomposition. Any monomial ideal of
the form 〈xai1i1 , . . . , x

ait
it
〉 is an irreducible monomial ideal. A monomial ideal can then be

decomposed into irreducible monomial ideals:

Theorem 3.15. Every monomial ideal I has a unique irredundant decomposition into
irreducible ideals; i.e., we can write I uniquely as

I = m1 ∩ · · · ∩mt

where each mi is an irreducible monomial ideal.

Proof. See [49, Theorem 5.27]. �

The next lemma is the basis of an algorithm to find this irreducible decomposition.

Lemma 3.16. Let I be a monomial ideal. If m is a minimal generator of I and m = m1m2

with gcd(m1,m2) = 1, then

I = (I + 〈m1〉) ∩ (I + 〈m2〉).

Example 3.17. If I = 〈x2, xy, y2〉, we can decompose it as

I = 〈x2, xy, y2, x〉 ∩ 〈x2, xy, y2, y〉 = 〈x, y2〉 ∩ 〈x2, y〉.

This example gives a hint of why an irreducible decomposition will be more useful. Note
that if J = 〈x, y〉, then I = J2. Then not only can we read off the associated primes,
e.g., Ass(J2) = {〈x, y〉}, but the irreducible decomposition is another way to express the
original ideal.

We now take a detour to introduce some more graph theory:
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Definition 3.18. Given a graph G = (V (G), E(G)) and integer s ≥ 1, the s-th expansion
of G, denoted Gs, is the graph constructed from G as follows: (a) replace each xi ∈ V (G)
with a clique of size s on the vertices {xi,1, . . . , xi,s}, and (b) two vertices xi,a and xj,b are
adjacent in Gs if and only if xi and xj were adjacent in G.

Example 3.19. We illustrate this example when G = C4, and we construct G2. Recall
that C4 is the graph:

x3

x2x1

x4

Then the second expansion of G is the graph:

x3,1

x2,1x1,1

x4,1

x4,2 x3,2

x2,2x1,2

We now come to our main result:

Theorem 3.20. Let G be a graph with cover ideal J(G). Then 〈xai1i1 , . . . , x
air
ir
〉 appears in

the irreducible decomposition of J(G)s if and only if the induced graph on

{xi1,1, . . . , xi1,s−ai1+1, . . . , xir,1, . . . , xir,s−air+1}

in Gs is a critically (s+ 1)-chromatic graph.

The proof is a mixture of a number of ingredients. It relies on generalized Alexander
duality, polarization and depolarization of monomial ideals, and a result of Sturmfels and
Sullivant [60]. We have only stated it for edge ideals of graphs, but it works also for edge
ideals of hypergraphs, i.e., any square-free monomial ideal.

Example 3.21. Let us return to Example 3.10 and explain why 〈x1, x2, x3, x4, x5, x6〉
appears in Ass(J(G)3). If we look at the irreducible decomposition of J(G)3 (which we
can compute using Macaulay 2 ), one of the irreducible monomial ideals that appears is
the ideal

〈x3
1, x

3
2, x

3
3, x

3
4, x

2
5, x

3
6〉.

So, we need to look at the induced graph on

{x1,1, x2,1, x3,1, x4,1, x5,1, x5,2, x6,1}
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in G3. This graph looks like:

x3,1

x2,1

x1,1

x5,1

x4,1

x6,1x5,2

You can now convince yourself that this graph is critically 4-chromatic.

3.3. Persistence of primes and a conjecture. We end with a conjecture about the
persistence of primes.

Definition 3.22. An ideal I in a Noetherian ring R has the persistence property if

Ass(Is) ⊆ Ass(Is+1) for all s ≥ 1.

Not every ideal has the persistence property, and in fact, proving that an ideal has
this property can be quite difficult. With respect to edge and cover ideals, we have the
following results:

Theorem 3.23. (a) (see [48]) For any graph G, the edge ideal I(G) has the persis-
tence property.

(b) (see [25]) If G is a chordal graph6, then J(G) has the persistence property.

What is interesting about the proof of (a) found in [48] is that one needs a classical
result from graph theory due to Berge on matchings in a graph to prove the persistence
property. The paper [48] is a good example of using results from graph theory to prove
an interesting algebraic result.

Computer experiments have suggested that Theorem 3.23 (b) will hold for any graph G,
i.e., the cover ideal J(G) for any G also has the persistence property. Unlike the case of
edge ideals, we need a graph theory result that appears unknown. We state the “missing”
graph theory result.

Definition 3.24. Let W ⊆ V (G). The expansion of G at W , denoted G[W ] is the the
graph obtained by replacing xi ∈ W with the edge {xi,1, xi,2} and joining to these two
vertices all the vertices to which xi was joined.

The following conjecture is found in [26]:

Conjecture 3.25. Suppose that G is a critically s-chromatic graph. Then there exists a
W ⊆ V (G) such that G[W ] is a critically (s+ 1)-chromatic graph.

Example 3.26. The conjecture is true for all odd cycles (i.e., the critically 3-chromatic
graphs; see [26] for a proof) and for graphs whose fractional chromatic number χf (G) (see
Section 1) is “close” to χ(G), i.e., χ(G)−1 < χf (G) ≤ χ(G). We illustrate the conjecture

6The result holds for a larger class of graphs called perfect graphs.
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with the graph G = C5. If we expand this graph at the vertices W = {x2, x5}, we get the
graph

x3

x2,1

x1

x5,1

x4

x2,2x5,2

This graph is critically 4-chromatic.

Francisco, Hà, and myself then proved that if this graph theory conjecture is true, then
one could prove that every cover ideal has the persistence property.

Theorem 3.27. If Conjecture 3.25 is true, then every cover ideal J(G) has the persistence
property.

Since the conjecture is true for s = 2 and s = 3, we know that for all graphs G, we
have the following containments:

Ass(J(G)) ⊆ Ass(J(G)2) ⊆ Ass(J(G)3).

We end with an open ended question. For any hypergraph, one can formulate a hyper-
graph version of Conjecture 3.25 and Theorem 3.20. Since the cover ideals of hypergraphs
are in one-to-one correspondence with all square-free monomial ideals, do we really have:

Question 3.28. Is it true that all square-free monomial ideals have the persistence prop-
erty?

4. The Macaulay 2 package EdgeIdeals

Computer algebra systems, like Macaulay 2 [31], Singular [14], and CoCoA [8], have
become essential tools for many mathematicians in commutative algebra and algebraic
geometry. These systems provide a “laboratory” in which we can experiment and play
with new ideas. From these experiments, a researcher can formulate new conjectures, and
hopefully, new theorems. Computer algebra systems are especially good at dealing with
monomial ideals. As a consequence, the study of edge and cover ideals is well suited to
experiments using computer algebra systems.

The purpose of this section is to familiarize the user with the package EdgeIdeals

that was written by C. Francisco, A. Hoefel, and myself [29]. This package, written for
Macaulay 2, provides a suite of functions to experiment with edge and cover ideals. Many
of the results discussed in the notes have been implemented into this package. Hopefully,
the tools introduced in this tutorial will be the basis of your own research results!

As a final note, although I primarily discuss the EdgeIdeal package, I would recommend
that your also become familiar with the packages SimplicialComplexes, written by S.
Popescu, G.G. Smith, and M. Stillman (see [42]), and SimplicialDecomposability by
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D.W. Cook II (see [10]). The first package contains a number of useful functions related
to simplicial complexes. In fact, the EdgeIdeals package requires a number of functions
from this package. The SimplicialDecomposability package of D.W. Cook II is useful
if you wish to study the properties of the simplicial complex associated to the edge or
cover ideal of a graph.

4.1. Getting Started. Obviously, the first thing you need to do is install the latest
version7 of Macaulay 2 on your computer. The download page is here:

http : //www.math.uiuc.edu/Macaulay2/Downloads/

Pick the appropriate operating system, and then follow the instructions. This may take
some time and patience.

I am going to assume that you have installed Macaulay 2 and now have it working.
To familiarize yourself with the basic syntax and some simple examples, a good place to
start is this web page:

http : //www.math.uiuc.edu/Macaulay2/GettingStarted/

If you have never used Macaulay 2, take a couple of minutes to try a couple of the sample
sessions.

4.2. The EdgeIdeals Package. Now that you have Macaulay 2 installed, we want to
load the EdgeIdeals package. If you are using a current version of Macaulay 2 (i.e., a
version ≥ 1.2), then this package should already be included with your installation of
Macaulay 2, and it simply has to be installed.

Remark 4.1. If you have an older version, or if your version does not include this package,
you should first download the source code from this link:

http : //j− sag.org/Volume1/EdgeIdeals.m2

Save the code in a file named EdgeIdeals.m2, and save the file into your working direc-
tory. You can now return to the directions below. Note that when you run the command
installPackage ‘‘EdgeIdeals’’, Macaulay 2 will install the package where it can al-
ways find it in the future.

Open Macaulay 2 and input the following command

Macaulay2, version 1.4

with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : installPackage "EdgeIdeals"

7At the time of writing this tutorial, the current version was 1.4
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You will only need to enter this command the first time you use the package. In the
background, this command is making all the help pages. Once you have installed the
package, you do not need to use the command again, but instead, use the instructions
below. If you wish, you can start a new session by typing restart.

When we first start Macaulay 2, we start with following screen:

Macaulay2, version 1.4

with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 :

At the prompt, type the following command to load the package EdgeIdeals:

i1 : loadPackage "EdgeIdeals"

o1 = EdgeIdeals

o1 : Package

i2 : loadedPackages

o2 = {EdgeIdeals, SimplicialComplexes, SimpleDoc, Elimination, LLLBases,

--------------------------------------------------------------------------

IntegralClosure, PrimaryDecomposition, Classic, TangentCone, ReesAlgebra,

--------------------------------------------------------------------------

ConwayPolynomials, Core}

o2 : List

The second command returns all the packages currently loaded in Macaulay 2. Note that
not only is the EdgeIdeals package loaded, but so is the SimplicialComplexes package.
Many of the functions in EdgeIdeals run “on top” of SimplicialComplexes.

We are now ready to try out EdgeIdeals. To get going, we spend a little time discussing
how to input a finite simple graph. As a concrete example, suppose that we want to study
the graph

x3

x2

x1

x5

x4

x6

We enter this information in such a way that Macaulay 2 recognizes it as a graph. There
are a couple of ways to do this. The first way is to input a polynomial ring to denote the
vertices, and then represent the edges as a list. For example

i3 : R = QQ[x_1..x_6]

o3 = R
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o3 : PolynomialRing

i4 : E = {{x_1,x_2},{x_2,x_3},{x_3,x_4},{x_4,x_5},{x_5,x_1},{x_1,x_6},{x_2,x_6},{x_3,x_6}}

o4 = {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x },

1 2 2 3 3 4 4 5 5 1 1 6 2 6

--------------------------------------------------------------------------

{x , x }}

3 6

o4 : List

i5 : H = graph(R,E)

o5 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 3 4 4 5 5 1 1 6 2 6 3 6

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o5 : Graph

Alternatively, the edges can be represented as the generators of a square-free quadratic
monomial ideal. If no ring is passed to the command graph, it takes the variables of the
current ring as the vertices of the graph. As an example, here is an alternative way to
input the above graph into Macaulay 2:

i6 : e = monomialIdeal(x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_1,x_1*x_6,x_2*x_6,x_3*x_6)

o6 = monomialIdeal (x x , x x , x x , x x , x x , x x , x x , x x )

1 2 2 3 3 4 1 5 4 5 1 6 2 6 3 6

o6 : MonomialIdeal of R

i7 : G = graph e

o7 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 3 4 1 5 4 5 1 6 2 6 3 6

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o7 : Graph

i8 : G==H

o8 = true



EDGE AND COVER IDEALS 34

Now that we have an object called a Graph, we can ask about its edge and cover ideals.
Both of these ideals can be easily obtained using the following commands:

i9 : i = edgeIdeal G

o9 = monomialIdeal (x x , x x , x x , x x , x x , x x , x x , x x )

1 2 2 3 3 4 1 5 4 5 1 6 2 6 3 6

o9 : MonomialIdeal of R

i10 : j = coverIdeal G

o10 = monomialIdeal (x x x x , x x x x , x x x x , x x x x , x x x x ,

1 2 3 4 1 2 3 5 1 2 4 6 1 3 4 6 1 3 5 6

-------------------------------------------------------------------------

x x x x , x x x x )

2 3 5 6 2 4 5 6

o10 : MonomialIdeal of R

The generators of J(G) are the minimal vertex covers of G; convince yourself that the
generators given in the above example are indeed the minimal vertex covers of the graph.

Recall that we showed that the Alexander dual of the edge ideal I(G) equals the cover
ideal of J(G). We can verify this for this ideal using a command from the SimplicialComplexes
package (which is also loaded):

i11 : dual i == j

o11 = true

Once you have inputted your graph, you can now compute some of its graph theoretic
invariants. For example, the chromatic number of the graph is computed as

i12 : chromaticNumber G

o12 = 3

To compute this number, we use the fact that

χ(G) = min{d | (x1 · · ·xn)d−1 ∈ J(G)d}
as proved in Section 1. Similarly, Fröberg’s Theorem gives us an algebraic characterization
of chordal graphs. We can therefore check if G is chordal:

i13 : isChordal G

o13 = false

To facilitate experimentation, we have built a number of functions to create commonly
occurring graphs, like cycles and cliques. Here are some examples:

i14 : C6 = cycle R
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o14 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 3 4 4 5 5 6 1 6

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o14 : Graph

i15 : C5 = cycle(R,5)

o15 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 3 4 4 5 1 5

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o15 : Graph

The command cycle will return a cycle of length equal to the number of variables in the
ring R as a default. If a number n is given, it will make a cycle of that length using the
first n variables. Cliques of size n are defined similarly:

i16 : K4 = completeGraph(R,4)

o16 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 1 3 1 4 2 3 2 4 3 4

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o16 : Graph

The command antiCycle is similar in that it returns the graph of the complement of a
cycle.

Also built into the EdgeIdeals package is a number of commands to construct sub-
graphs. For example, suppose that we wish to look at the induced subgraph of G on the
vertices P = {x1, x2, x6, x5}. This can be done as follows:

i17 : P = {x_1,x_2,x_6,x_5}

o17 = {x , x , x , x }

1 2 6 5

o17 : List

i18 : GP = inducedGraph(G,P)

o18 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }}}

1 2 1 5 1 6 2 6

ring => QQ[x , x , x , x ]
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1 2 6 5

vertices => {x , x , x , x }

1 2 6 5

o18 : Graph

Another similar command that may prove helpful is deleteEdges which removes a col-
lection of edges from a graph.

To facilitate research, the EdgeIdeals package includes a function called randomGraph.
This function allows you to generate a random graph on defined number of vertices and
edges, and is useful when creating conjectures. Here is an example of the this function in
action:

i19 : randomGraph(R,8)

o19 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 2 4 5 6 4 6 3 6 2 5 2 6

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o19 : Graph

In this case, we are asking for a random graph on 6 vertices (the number of variables in
the polynomial ring R) with 8 edges. This function can be used to test a large number of
examples quickly.

As a final note, the documentation of the EdgeIdeals package can be found here:

http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.4/share/doc/Macaulay2/EdgeIdeals/html/index.html

All the commands given in the package are listed on this page. Detailed documentation
and examples can be found by clicking on the appropriate links.

5. Tutorials

I have included two tutorials to give you a chance to play around and experiment
with edge and cover ideals using Macaulay 2. These tutorials were first given to the
participants of MONICA. When required, the tutorials provide needed definitions, results,
and references. Some of the initial problems ask you to prove some simple results in order
to give you a feeling for the material, while other problems ask you to program some
simple procedures using Macaulay 2 in order to help you develop your Macaulay 2 skills.
The last batch of questions for each tutorial is a series of open questions. These questions
are denoted by an asterisk. (If you come up with any ideas, I would love to hear them!)

5.1. Tutorial 1: Splitting Monomial Ideals. In this tutorial, we explore some of the
properties of splitting monomial ideals as discussed in Section 2.
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Exercise 5.1.1. Suppose I = J +K is a Betti splitting. Prove that

reg(I) = max{reg(J), reg(K), reg(J ∩K)− 1}.
Here, reg(−) denotes the regularity of the given ideal.

Remark. This result can be quite useful when doing induction. For example, this fact
was used to give a new proof for the regularity of the edge ideal of a tree [34].

Exercise 5.1.2. Write a Macaulay 2 program that takes as input two monomial ideals J
and K, and will return true or false depending upon whether J +K is a Betti splitting.

Hint. The command betti res I will return the Betti diagram of the ideal I. Read
through the betti documentation in order to extract out the information you are looking
for. If you are interested in a particular graded Betti number, you may wish to first define
the function:

beta = (i,j,I) -> (betti res I)#(i,{j},j)

Exercise 5.1.3. (Importance of char(k)) Consider the following ideal inR = k[x1, . . . , x6]:

I = (x1x2x4, x1x2x6, x1x3x5, x1x3x4, x1x5x6, x2x4x5, x2x3x6, x2x3x5, x3x4x6, x4x5x6).

Fix a variable xi, and form an xi-partition of I, i.e., let J be the ideal generated by all
the generators of I divisible by xi, and let K be the ideal generated by the remaining
generators. Use Macaulay 2 to show I = J + K is a Betti splitting in char(k) = 2, but
not a Betti splitting if char(k) 6= 2.

Hint. One way to input a ring of characteristic two is

i1 : S = ZZ/(2)[a,b,c]

Definition 5.1. Let I(G) be the edge ideal of a graph. For any edge e = {xi, xj}, we
have the partition

I(G) = 〈xixj〉+ I(G \ e)
where G \ e is the graph G with the edge e removed. We call e a splitting edge if this
partition is a Betti splitting.

Exercise 5.1.4. Consider the graph

x3

x2

x1

x5

x4

x6

Determine which edges of this graph are splitting edges.

Exercise 5.1.5. Write a program in Macaulay 2 that inputs a graph, and returns all the
edges in the graph that are splitting edges.

Exercise 5.1.6. Let G = Cn be a cycle of length n ≥ 4. Prove that G has no splitting
edge.
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Exercise 5.1.7. Let G = Kn be the clique of size n ≥ 3. Prove that every edge of G is
a splitting edge.

Exercise 5.1.8. Find a graph G that is not a cycle, but no edge is a splitting edge, or
prove that this is not possible. Then, find a graph G that is not a clique, but every edge
is a splitting edge, or prove that this is not possible.

Exercise 5.1.9. A vertex v is called a leaf if deg v = 1. Suppose that v is a leaf, and
e = {v, u} is the only edge that contains v. Prove that e is a splitting edge.

Exercise 5.1.10. Let N(x) = {y | {x, y} ∈ E(G)} be the neighbours of x. Make a
conjecture about {x, y} being a splitting edge in terms of N(x) ∪ N(y). Compare your
answer to [34].

?Exercise 5.1.11. Is the number of splitting edges related to any invariants of G or I(G)?

?Exercise 5.1.12. Find other ways to split I(G).

?Exercise 5.1.13. Are there any nice ways to construct Betti splittings of the cover ideal
J(G)? (I am only aware of how to split J(G) in the case that R/J(G) is Cohen-Macaulay
and G is bipartite [28].)

?Exercise 5.1.14. Are there Betti splittings of the ideals I(G)s and J(G)s, for some
integer s?

5.2. Tutorial 2: Regularity. In this tutorial, we look at the regularity of edge and
cover ideals.

Exercise 5.2.1. A tree is a graph without any induced cycles. If T is a tree, what is the
regularity of I(T c), where T c is the complement of T?

Exercise 5.2.2. Describe all trees T with the property that reg(I(T )) = 2.

Exercise 5.2.3. Create any graph G where the smallest induced cycle of Gc has length
4. Use Macaulay 2 to compute the resolution. Now repeat for a graph G whose smallest
induced cycle in Gc has length 5, 6, 7, . . . until you observe your pattern. Compare your
answer to Eisenbud, et al. [17].

Exercise 5.2.4. If you would like to see the code of a Macaulay 2 function, you can use

code methods use 〈 function name 〉
Look at the code for smallestCycleSize. Try to figure out how Macaulay 2 finds the
smallest induced cycle in a graph.

Exercise 5.2.5. Write a Macaulay 2 function that checks if a graph has an induced 4
cycle.

Hint. Use the fact that
β1,4(I(G)) = c4(Gc)

where c4(H) denotes the number of induced four cycles in the graph H (see [64]).
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Exercise 5.2.6. Write a Macaulay 2 function that tests whether an ideal has a linear
resolution.

Exercise 5.2.7. Nevo and Peeva [53] have made the following conjecture:

Conjecture 5.2. For all graphs G, if Gc has no induced four cycles, then there exists an
integer s such that I(G)s has a linear resolution.

Using the command randomGraph, find 10 graphs where the conjecture is true, and for
each graph, find the smallest integer s where I(G)s has a linear resolution.

Exercise 5.2.8. The path of length n, denoted Pn is the graph with vertex set {x1, x2, . . . , xn}
and edge set

{{x1, x2}, {x2, x3}, . . . , {xn−1, xn}}.
Compute the regularity of I(Pn) for some n until you find a pattern. Compare your result
to Jacques [47].

?Exercise 5.2.9. Let T be a tree. Find a formula for reg(I(T )s) as s varies.

Hint. You may wish to start with the case that T = Pn first.

?Exercise 5.2.10. Find a formula for reg(J(G)) and reg(I(G)) for any graph.

Hint. This problem is probably too open ended. I am not aware of many results on the
regularity of J(G). For edge ideals, more is known (do a Google search on “regularity
edge ideals”). For bipartite graphs, we almost have a complete story. See [62] for more.
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