
An Introduction

to the

Theory and Applications

of

Continued Fractions

Adam L. Van Tuyl

Math 395 - Senior Thesis

Calvin College

Grand Rapids, Michigan

Advisor: Dr. Paul Zwier

March 1, 1996



Abstract

This paper is the written component of my independent study on
expressions of the form

a1 +
b1

a2 +
b2

a3 +
b3

a4 +
b4

a5 +
b5

. . .

Such expressions are called continued fractions. In this paper, I give
some of the basic definitions of continued fractions, a brief history of
the subject, as well as proving a number of elementary theorems that
utilize continued fractions. I conclude this paper by detailing my own
project, that is, making a World Wide Web site devoted to continued
fractions. This web site enables the casual or interested user to explore
the subject of continued fractions. The web site contains not only a
number of theorems, but interactive programs that I have written that
use or compute continued fractions. The Uniform Resource Locator
(URL) of the site is http://www.calvin.edu/∼avtuyl52/confrac/.
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Forward

This paper has been written to fulfill one of the requirements for an Honors
Degree from the mathematics department of Calvin College. This paper
should be accessible to other undergraduate mathematics majors who are
either at the junior or senior level. The subject of this report is continued
fractions, a field of mathematics that is not commonly taught at Calvin
but has the property of being easily understood by upper level mathematics
majors.

I would like to thank all those who helped me by answering one or more
of the many questions I came up against, especially those who answered
some of my computer related questions. I would especially like to thank Dr.
Thomas Jager for his suggestions and Dr. Paul Zwier for his willingness to
help me on this project and providing me with much needed direction and
insight.
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1 Introduction and Basic Definitions

Consider the following example from first year calculus. Suppose that you
are given the sequence {1, 1

2
, 1
4
, 1
8
, . . . , 1

2n−1 , . . .}. One of the natural ques-
tions one can ask about this sequence is whether the sum of all the elements
is defined. That is, does the series

∞
∑

i=0

1

2i

converge to some real number, or does the series diverge? To determine this,
we can ask whether the sequence {Sn} converges to some number, where Sn

is defined to be the partial sum

Sn =
n
∑

i=0

1

2i
.

If the limn→∞ Sn exists and is some s, then the sum is equal to s. We know
from calculus that in our example the series does in fact converge. When
we calculate the above series, we find that

∞
∑

i=0

1

2i
=

1

1− 1
2

= 2.

To solve this problem we made use of the fact that our series is a geometric
series, that is, successive terms are separated by a common ratio, in this
case, 1

2
.

We can generalize the above example to the following. If we are given a
sequence {a1, a2, a3, . . . , an, . . .}, we can ask whether the sum

∞
∑

i=1

ai

is defined. To check if this is true, we merely have to determine if the
sequence {Sn}, where Sn is defined to be

Sn =
n
∑

i=1

ai,

converges to some number s. If it does, the sum converges to this number.
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We also know from calculus that we can ask whether the product of all
the terms in a sequence converges or diverges, that is, is

Π∞
i=1ai = a1a2a3 . . .

defined. To determine if this is true, we use a similar method of creating a
sequence and asking whether that sequence converges to some number p. In
this case, we form the sequence Pn where

Pn = Πn
i=1ai.

If the sequence {Pn} converges to some number p, this is the value to which
the product will also converge.

In both cases, we are curious about the infinite application of a binary
function. In the first case, we want to know what happens when we add
an infinite number of things together; in the second case, we want to know
what happens when we multiply an infinite number of things together.

We can take this a step further and ask if it makes sense to divide and
add an infinite number of times. That is, if we are given two sequences
{a1, a2, a3, . . . , an, . . .} and {b1, b2, b3, . . . , bn, . . .}, is the expression

a1 +
b1

a2 +
b2

a3 +
b3

a4 +
b4

a5 +
b5
. . .

defined. Expressions of this form were eventually given the name of contin-
ued fractions. Once again, by forming the sequence {Cn}, where

Cn = a1 +
b1

a2 +
b2
. . .

an−1 +
bn−1

an

,

we can determine whether the continued fraction exists. It will do so if
{Cn} converges to some real number c. In searching for the answer to this
question, the foundation for the field of continued fractions was laid.
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In this paper, we will examine this field of mathematics devoted to con-
tinued fractions. We will begin with a historical overview of this discipline.
Following this, we will prove some of the classical theorems that deal with
these fractions. We will also see some of the uses of continued fractions,
such as its use in determining which gears to use to create a desired gear
ratio. Finally, I will discuss my own particular project that involved contin-
ued fractions, specifically, creating an introductory web site for continued
fractions.

Before we do this, however, we need to go over some basic definitions
and ideas that are used throughout this paper. Below are a number of basic
terms and definitions connected with the field of continued fractions. They
have been derived from [6], [7], and [9].

Definition 1 An expression of the form

a1 +
b1

a2 +
b2

a3 +
b3

a4 +
b4

a5 +
b5
. . .

is said to be a continued fraction. The values of a1, a2, a3, . . . and
b1, b2, b3, . . . can be either real or complex values. There can be either
an infinite or a finite number of terms. Note that if bn = 0 for any n,
then the continued fraction is finite.

Definition 2 A simple continued fraction is a continued fraction in which
the value of bn = 1 for all n, that is,

a1 +
1

a2 +
1

a3 +
1

a4 +
1

a5 +
1

. . .

The value of an is a positive integer for all n ≥ 2; a1 can be any
integer value, including 0. The above fraction is sometimes repre-
sented by [a1; a2, a3, . . .]. If the fraction is finite, we represent it by
[a1; , a2, . . . , an].

3



Definition 3 The terms of a simple continued fraction refer to the values
of a1, a2, a3, . . .. For example, a4 is the fourth term. Sometimes, they
are referred to as partial quotients.

Definition 4 - 5 A finite simple continued fraction is a simple continued
fraction with only a finite number of terms. An infinite simple contin-
ued fraction is a simple continued fraction with an infinite number of
terms.

Definition 6 The simple continued fraction [a1; a2, a3, . . . , ak], where k is
such that 1 ≤ k ≤ n, is called the kth convergent of the simple con-
tinued fraction [a1; a2, a3, . . . , an], or [a1; a2, a3, . . . , an, . . .]. The kth

convergent is denoted by Ck. For example,

C1 = 1,

C2 =
3

2
,

and

C3 =
10

7

are the three convergents of the simple continued fraction

1 +
1

2 +
1

3

.

Remark

It should be noted that throughout this paper the continued fractions that
we are going to focus upon are simple continued fractions, that is, a contin-
ued fraction where bi = 1 for all i, and ai is a positive integer for all i > 1.
The value of a1 can be any integer value, including zero. We will examine
both finite and infinite simple continued fractions.

2 History

To do mathematics, that is, in order to understand and to make contribu-
tions to this discipline, it is necessary to study its history. Unlike most other
disciplines, mathematics is constantly building upon past discoveries. This is
due to the nature of mathematics. Once something has been demonstrated
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conclusively to be true (or, for that matter, false) the case is considered
closed. For example, the square root of two can always be shown to be
irrational. Thus, those who wish to study a particular field of mathematics,
whether it be statistics, abstract algebra, or continued fractions, will first
need to study the field’s past. In doing so, one is able to build upon past
accomplishments rather than repeating them.

The origin of continued fractions is hard to pinpoint. This is due to the
fact that we can find examples of these fractions throughout mathematics
in the last 2000 years, but its true foundations were not laid until the late
1600’s and early 1700’s.

The origin of continued fractions is traditionally placed at the time of
the creation of Euclid’s Algorithm.[7] Euclid’s Algorithm can be used to find
the greatest common denominator (gcd) of two numbers. However, by alge-
braically manipulating the algorithm, one can derive the simple continued
fraction of the rational p

q
as opposed to the gcd of p and q. This manipula-

tion will be demonstrated later in the paper. It is doubtful whether Euclid
or his contemporaries actually used this algorithm in such a manner. But
due to its close relationship to continued fractions, the creation of Euclid’s
Algorithm signifies the initial development of continued fractions.

For more than a thousand years, any work that used continued fractions
was restricted to specific examples. The Indian mathematician Āryabhata
(d. 550 AD) used a continued fraction to solve a linear indeterminate equa-
tion (more will be discussed on this topic later in the paper).[7] However,
Āryabhata did not generalize his method.

Throughout Greek and Arabic mathematical writing, we can find ex-
amples and traces of continued fractions.[7] But again, its use is limited to
specific problems.

Two men from the city of Bologna, Italy, Rafael Bombelli (born c.1530)
and Pietro Cataldi (1548-1626) must also be included in the history of con-
tinued fractions because they contributed examples of continued fractions
for irrational numbers.[7] Bombelli expressed

√
13 as a repeating continued

fraction. Cataldi did the same for
√
18. Besides these examples, however,

neither mathematician investigated the properties of continued fractions.
Continued fractions became a field in its right through the work of John

Wallis (1616-1703).[7][5] In his book Arithemetica Infinitorium (1655), he
developed and presented the identity

4

π
=

3× 3× 5× 5× 7× 7× 9 · ··
2× 4× 4× 6× 6× 8× 8 · ··
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The first president of the Royal Society, Lord Brouncker (1620-1684),
transformed this identity into

4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

. . .

Though Brouncker did not dwell on the continued fraction, Wallis took the
initiative and began the first steps towards generalizing continued fraction
theory.

In his book Opera Mathematica (1695) Wallis laid some of the basic
groundwork for continued fractions. He explained how to compute the nth

convergent and discovered some of the now familiar properties of conver-
gents. It was also in this work that the term continued fraction was first
used.

The Dutch mathematician and astronomer Christiaan Huygens (1629-
1695) was the first to demonstrate a practical application of continued
fractions.[7][6] He wrote a paper explaining how to use the convergents of
a continued fraction to find the best rational approximations for gear ra-
tios. These approximations enabled him to pick the gears with the correct
number of teeth. His work was motivated in part by his desire to build a
mechanical planetarium.

While the work of Wallis and Huygens began the work on continued
fractions, the field of continued fractions began to flourish when Leonard
Euler (1707-1783), Johan Heinrich Lambert (1728-1777), and Joseph Louis
Lagrange (1736-1813) embraced the topic. Euler laid down much of the
modern theory in his work De Fractionlous Continious (1737).[5] He showed
that every rational can be expressed as a terminating simple continued frac-
tion. He also provided an expression for e in continued fraction form. This
identity is expressed below.
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e− 1 = 1 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 + 1

. . .

He used this expression to show that e and e2 are irrational. He also demon-
strated how to go from a series to a continued fraction representation of the
series, and conversely.

Lambert generalized Euler’s work on e to show that both ex and tanx
are irrational if x is rational.[5] Lagrange used continued fractions to find
the value of irrational roots.[5] He also proved that a real root of a quadratic
irrational is a periodic continued fraction.

The nineteenth century can probably be described as the golden age of
continued fractions. As Claude Brezinski writes in History of Continued
Fractions and Padé Approximations, “the nineteenth century can be said
to be the popular period for continued fractions.”[2] It was a time in which
“the subject was known to every mathematician.”[2] As a result, there was
an explosion of growth within this field. The theory concerning continued
fractions was significantly developed, especially that concerning the con-
vergents. Also studied were continued fractions with complex variables as
terms. Some of the more prominent mathematicians to make contributions
to this field include Jacobi, Perron, Hermite, Gauss, Cauchy, and Stieljes.[2]
By the beginning of the 20th century, the discipline had greatly advanced
from the initial work of Wallis.

Since the beginning of the 20th century continued fractions have made
their appearances in other fields. To give an example of their versatility,
a recent paper by Rob Corless examined the connection between continued
fractions and chaos theory.[3] Continued fractions have also been utilized
within computer algorithms for computing rational approximations to real
numbers, as well as solving indeterminate equations.

This brief sketch into the past of continued fractions is intended to pro-
vide an overview of the development of this field. Though its initial devel-
opment seems to have to taken a long time, once started, the field and its
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analysis grew rapidly. Even today, the fact that continued fractions are still
being used signify that the field is still far from being exhausted.

3 Theory

In this section, I present some of the basic theorems that involve continued
fractions. I have split this section into three subsections. The first discusses
continued fractions and rational numbers. The second subsection deals with
the convergents of a continued fraction. The final section is on continued
fractions and irrational numbers.

3.1 Continued Fractions and Rational Numbers

We begin by proving a theorem about the connection between finite simple
continued fractions and rationals. The proof has been developed from [7]
and [6].

Theorem 1 A number is rational if and only if it can expressed as a simple
finite continued fraction

PROOF: Let α be a rational number. Then α = p
q
for some integers

p and q, q 6= 0. Suppose also that α is in lowest terms, that is, p and
q are relatively prime. To prove the statement, we make use of Euclid’s
Algorithm. By applying this algorithm, we can write

p = a1q + r1, 0 ≤ r1 < q,

q = a2r1 + r2, 0 ≤ r2 < r1,

r1 = a3r2 + r3, 0 ≤ r3 < r2,

...

rn−3 = an−1rn−2 + rn−1, 0 ≤ rn−1 < rn−2,

rn−2 = anrn−1.

The sequence r1, r2, r3, . . . , rk, . . . forms a strictly decreasing sequence of
non-negative integers that must become zero in a finite number of steps.
Our notation is chosen so that rn = 0 and ri 6= 0 for 0 < i < n.

The next step involves rearranging the algorithm in the following man-
ner.
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p

q
= a1 +

1
q
r1

q

r1
= a2 +

1
r1
r2

r1

r2
= a3 +

1
r2
r3

...
rn−2

rn−1

= an−1 +
1

rn−1

rn
rn−1

rn
= an

Now, substituting each equation into the previous, we find that

α =
p

q
= a1 +

1

a2 +
1

a3 +
1

a4 +
1

+

.. .

an−1 +
1

an

which is a finite simple continued fraction, as desired.
To show the converse, we prove by induction that if a simple continued

fraction has n terms, it is rational. LetX represent the value of the continued
fraction. We first check the base case n = 1. Then

X = a1

But then X is clearly a rational, since a1 is an integer.
We now prove the inductive case. Assume the theorem is true for all

continued fractions having n terms. We now show that the theorem also
holds for continued fractions with n + 1 terms. Let X be the value of a
continued fraction that has n+1 terms. We wish to show that X is rational.
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So, we have

X = a1 +
1

a2 +
1

a3 +
1

a4 +
1

+

.. .

an +
1

an+1

.

Note, however, that we can rewrite this expression as

X = a1 +
1

B
,

where B is the continued fraction

B = a2 +
1

a3 +
1

a4 +
1

+

.. .

an−1 +
1

an +
1

an+1

.

But B is a continued fraction with n terms, and by our induction hypothesis,
it can be written as a rational p

q
. This implies that

X = a1 +
1
p

q

.

By applying some simple algebra, we arrive at the following equality,

X =
a1p+ q

p
.

Since a1, as well as p and q, is an integer, X must be a rational. Thus, the
theorem is true for n+ 1, and by induction, it must hold for all integers. ✷

It should be noted that the simple continued fraction expansion of a
rational is not necessarily unique. For example, the simple continued fraction

[a1; a2, a3, . . . , an−1, an]
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is equivalent to the simple continued fraction

[a1; a2.a3, . . . , an−1, (an − 1), 1]

since

an = (an − 1) +
1

1
if an > 1. These two expressions, however, are the only possible two for any
given rational. Of the two, the first is generally preferred.

3.2 The Convergents of Continued Fractions

One concept in the theory of continued fractions that cannot be glossed over
is that of the convergents of a continued fraction. To ignore this topic is
to ignore a central feature of continued fractions. Going back to our initial
example of sequences and series in the introduction, the series

N
∑

i=1

ai

is an approximation to the series

∞
∑

i=1

ai.

In fact, by definition

lim
N→∞

N
∑

i=1

ai =
∞
∑

i=1

ai.

The same thing is true with continued fractions. The continued fraction

Ck = a1 +
1

a2 +
1

+

.. .

ak−1 +
1

ak

is an approximation to the simple continued fraction

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .
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In fact, it can be shown that if limk→∞Ck exists and is c, we say that c is
the value of the infinite continued fraction. This is expressed as

lim
k→∞

Ck = a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

.

The convergents of the continued fraction, as we will soon see, can be very
useful. They give us the ability to solve indeterminate equations such as
Diophantine and Pell’s equations. In the following, I prove two important
theorems about these convergents. The first theorem describes how we can
calculate convergents through a recursive definition, while the second pro-
vides an important relationship between successive convergents. The proofs
of [7] and [9] have been used as a source for these proofs.

Theorem 2 Given a simple continued fraction with the terms,

[a1; a2, a3, . . . , an, . . .],

the numerator pi and denominator qi of the ith convergent are defined for
all i ≥ 0 by the recursive definition

pi = aipi−1 + pi−2

qi = aiqi−1 + qi−2

where p−1 = 0, p0 = 1, q−1 = 1, and q0 = 0. Note that in this cases, ai can
be any complex value.

What we are going to do in this proof is show that

C1 = [a1; ] =
p1

q1

C2 = [a1; a2] =
p2

q2

C3 = [a1; a2, a3] =
p3

q3
...

If this is indeed true, it will give us a simple way to calculate the convergents
of the continued fraction.

12



PROOF: We will prove this statement by using induction. Let the simple
continued fraction

[a1; a2, a3, . . . , an−1, an, . . .]

be given. The continued fraction can be infinite or finite. We need to first
check the two base cases.

C1 = a1 =
a1

1
=

a11 + 0

a10 + 1
=

a1p0 + p−1

a1q0 + q−1

=
p1

q1

C2 = a1 +
1

a2
=

a1a2 + 1

a2
=

a2a1 + 1

a21 + 0
=

a2p1 + p0

a2q1 + q0
=

p2

q2

Both cases agree with the definition. We now assume that the statement is
true for the positive integer k. We wish to show that the statement is true
for k + 1.

Ck+1 = [a1; a2, a3, . . . , ak−1, ak, ak+1].

We can rewrite this fraction in the following manner

Ck+1 = [a1; a2, a3, . . . ,

(

ak +
1

ak+1

)

].

The continued fraction now has k terms, where each term is a complex value,
and by hypothesis

Ck+1 =
(ak +

1
ak+1

)pk−1 + pk−2

(ak +
1

ak+1
)qk−1 + qk−2

=
(akak+1 + 1)pk−1 + ak+1pk−2

(akak+1 + 1)qk−1 + ak+1qk−2

=
akak+1pk−1 + pk−1 + ak+1pk−2

akak+1qk−1 + qk−1 + ak+1qk−2

=
ak+1(akpk−1 + pk−2) + pk−1

ak+1(akqk−1 + qk−2) + qk−1

=
ak+1pk + pk−1

ak+1qk + qk−1

=
pk+1

qk+1

The second last step made use of the induction hypothesis for the substitu-
tion. The theorem is thus true for k + 1, and by induction, must hold for
all integers. ✷
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To demonstrate how this algorithm works, I have provided a simple
example. Consider the following simple finite continued fraction

1 +
1

2 +
1

3 +
1

4

.

Then, by applying the previous theorem, we see that

p1 = a1p0 + p−1 = 1(1) + 0 = 1

p2 = a2p1 + p0 = 2(1) + 1 = 3

p3 = a3p2 + p1 = 3(3) + 1 = 10

p4 = a4p3 + p2 = 4(10) + 3 = 43

and

q1 = a1q0 + q−1 = 1(0) + 1 = 1

q2 = a2q1 + q0 = 2(1) + 0 = 2

q3 = a3q2 + q1 = 3(2) + 1 = 7

q4 = a4q3 + q2 = 4(7) + 2 = 30

Using these results, we can easily compute the convergerts of the continued
fraction. They are C1 = 1, C2 =

3
2
, C3 =

10
7
, and C4 =

43
30
.

One other theorem that involves convergents demonstrates a relationship
between successive convergents, or more specifically, between their numera-
tors and denominators.

Theorem 3 If pk and qk are defined as in the above theorem, then

pkqk−1 − pk−1qk = (−1)k

for all i ≤ 0.

PROOF: To prove this, we will once again do a proof by induction We
first check the two base cases, that is, for i = 1 and i = 2.

p0q−1 − p−1q0 = 1(1)− 0(0) = 1 = (−1)0

14



p1q0 − p0q1 = (a1p0 + p−1)(0)− 1(a1q0 + q1)

= 0− 1(0 + 1)

= −1

= (−1)1

Now we show that the above theorem holds for all k. Assume that the the-
orem is true for the positive integer k. We want to show that the statement
is true for k + 1.

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1)

= ak+1pkqk + pk−1qk − ak+1pkqk − pkqk−1

= pk−1qk − pkqk−1

= −(pkqk−1 − pk−1qk)

= −(−1)k

= (−1)k+1

Since the statement is true for k+1, by induction, the theorem holds for all
integers k. ✷

This completes a brief introduction to convergents. We will, however,
return to the subject when we discuss applications of continued fractions.

3.3 Continued Fractions and Irrational Numbers

Given any irrational number α, we can express α as a continued fraction by
using the following recursive definition:

ai = ⌊αi⌋

αi+1 =
1

αi − ai

where α1 = α and the function ⌊γ⌋ denotes the greatest integer less than or
equal to γ. This algorithm is attributed to Euler.

For example, consider the irrational number π = 3.1415926535..... We
first let α1 = π. Then

a1 = ⌊π⌋ = 3

15



α2 =
1

π − 3
= 7.0625133...

a2 = ⌊7.0625133...⌋ = 7

α3 =
1

7.0625133...− 7
= 15.99659...

a3 = ⌊15.99659...⌋ = 15

...

Thus, the continued fraction for π is

3 +
1

7 +
1

15 +
1

. . .

Note, that from this continued fraction, we can compute its convergents.
These convergents provide us with rational approximations to π. The first
three are:

C1 = 3

C2 =
22

7

C3 =
333

106

The continued fraction expansion of any irrational number α, it should
be noted, has an infinite number of terms. In the next theorem, we formalize
this statement.

Theorem 4 If α is an irrational number, then its simple continued fraction
expansion is infinite.

PROOF: Let α be an irrational number, and suppose that its simple
continued fraction is finite. Then the simple continued fraction has n terms
where n is a postive integer. But by Theorem 1, the value of any continued
fraction with a finite number of terms must be rational. Hence the continued
fraction is equivalent to a rational, and thus, it cannot be equivalent to α.
This provides us with the necessary contradiction.✷

We can now claim that we can convert any real number α into a continued
fraction. The converse is also true. In the next theorem, we state this idea
more formally without proof.
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Theorem 5 (Euler’s Theorem) Every simple continued fraction conver-
ges to a unique real number. Conversely, for any real number there is a
simple continued fraction which converges to it.

While the set of irrational numbers can be broken down up into various
subsets, ie., algebraic and transcendental, the next theorem will deal with
a specific subset of these numbers, namely quadratic irrationals. Before I
can prove a theorem on the connection between quadratic irrationals and
continued fractions, it is necessary to first provide two definitions, as well as
a lemma, that have been modeled on [9].

Definition A quadratic irrational refers to all numbers of the form

A+
√
B

C

where A, B, and C, are integers (B must also be positive and non-
square and C must be non-zero). They are called quadratic irrationals
since they are irrational roots of quadratic equations, specifically of

C2x2 − 2ACx+ (A2 −B) = 0.

Definition The infinite simple continued fraction [a1; a2, a3, . . .] is said to
be periodic if there are postive integers N and k such that for all
n ≥ N , an = an+k. We represent this continued fraction

[a1; a2, a3, . . . , aN−1, aN , aN+1, . . . , aN+k−1, aN , aN+1, . . .]

by the more effecient notation

[a1; a2, a3, . . . , aN−1, aN , aN+1, . . . , aN+k−1].

Lemma 1 If α is a quadratic irrational, and r, s, t, and u are integers, then
rα+s
tα+u

is either a quadratic irrational, or rational.

PROOF: Let α be a quadratic irrational. Then α can be rewritten as
a+

√
b

c
, where a, b, and c are integers, b is a positive non-sqare integer, and

c 6= 0. Thus

rα+ s

tα+ u
=

r(a+
√
b

c
) + s

t(a+
√
b

c
) + u
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=
ra+ r

√
b+ sc

ta+ t
√
b+ uc

=
(ra+ sc) + r

√
b

(ta+ uc) + t
√
b

=

(

(ra+ sc) + r
√
b

(ta+ uc) + t
√
b

)

·
(

(ta+ uc)− t
√
b

(ta+ uc)− t
√
b

)

=
(ra+ sc)(ta+ uc) + [r(ta+ uc)− t(ra+ sc)]

√
b

(ta+ uc)2 − t2b

We now see that rα+s
tα+u

is a quadratic irrational since it is of the form P+
√
Q

R
.

It is rational if the coeffecient of
√
b in the last equation above is zero. This

will occur if ru = ts. ✷
With these definitions and this lemma, we can now prove the following

theorem about continued fractions and irrational numbers.

Theorem 6 If the infinite simple continued fraction of an irrational number
is periodic, then the irrational number is a quadratic irrational.

PROOF: Let α be an irrational number whose continued fraction is pe-
riodic. Then α = [a1; a2, a3, . . . , aN , aN+1, . . . , aN+k−1]. Let β represent the
periodic portion of the continued fraction. Thus,

β = [aN+1, . . . , aN+k−1].

We can rewrite this as

β = [aN+1, . . . , aN+k−1, β].

By applying our knowledge of convergents, we see that

pk

qk
= β =

βpk−1 + pk−2

βqk−1 + qk−2

.

In this case,
pk−1

qk−1
and

pk−2

qk−2
are the (k − 1)th and (k − 2)th convergents of

[aN+1, . . . , aN+k−1] respectively. Solving for β in the above equation, we
find that

β2qk−1 + (qk−2 − pk−1)β − pk−2 = 0.

We see that β is a quadratic irrational since it is the root of a quadratic
equation. Note that β cannot be a rational root since the continued fraction
of β is infinite.
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We can now rewrite α as

α = [a1; a2, a3, . . . , aN , β]

Again, we apply the definition of convergents to find that

α =
pN+1

qN+1

=
βpN + pN−1

βqN + qN−1

where pN
qN

and
pN−1

qN−1
are the N th and (N −1)th convergents of [a1; a2, a3, . . . ,

aN ]. By our lemma, we see that α must be either a quadratic irrational or
a rational. However, α cannot be rational since its continued fraction is
infinite. Thus, α is a quadratic irrational, and hence, all periodic continued
fractions are equal to some quadratic irrational. ✷

We provide the following example to demonstrate this theorem. Con-
sider the following periodic continued fraction where x is the value of the
continued fraction.

x = 2 +
1

2 +
1

2 +
1

2 +
1

. . .

.

By the theorem just proved, x should be a quadratic irrational. We can
rewrite the continued fraction as

x = 2 +
1

x
.

We then rearrange the equation to get

x2 − 2x− 1 = 0.

Solving for x, we find that
x = 1±

√
2.

However, since x is positive, we let x equal the positive root, 1 +
√
2, which

is indeed a quadratic irrational.
The converse of this theorem is true as well. A proof is omitted from this

discussion since it requires a number of lemmas, an explanation of reduced
quadratic irrationals, as well as a description of a recursive algorithm for
computing the terms of a continued fraction. This theorem and the one we
just proved are combined into one theorem named after Lagrange who first
proved the converse of Theorem 6. The statement of the theorem can be
found below.
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Theorem 7 (Lagrange’s Theorem) The infinite simple continued frac-
tion of an irrational number is periodic if and only if this number is a
quadratic irrational.

A proof of the converse can be found in [9].

4 Applications

Continued fractions, like many other fields of mathematics, also has an ap-
plied aspect. Recall from the historical overview of the field that the Indian
mathematician Āryabhata used continued fractions to solve indeterminate
equations. The Dutch astronomer Huygens used continued fractions to find
which gears should be used to create a desired gear ratio. In this section, I
explain these two applications in greater detail.

4.1 Continued Fractions and Indeterminate Equations

The equation 4x+ 7y = 13 is said to be an indeterminate equation because
any solution for y depends on the value choosen for x. The solutions cannot
be determined solely from the given information, hence the use of the term
indeterminate. In number theory we are interested in finding all integer
solutions to such equations.

Two indeterminate equations that have received much attention over the
centuries have the following forms:

ax+ by = c (1)

x2 − Py2 = 1 (2)

where a, b, and c are integers and P is any positive integer that is not a
perfect square. Equations that have the form of (1) are generally referred
to as linear Diophantine equations after the 3rd century A.D. Greek mathe-
matician Diophantus.[7] The equations that have the form of (2) are called
Pell’s equations, named after John Pell (1611-1685).[7]

Though continued fractions can be used to solve both equations, I will
concentrate on how to use continued fractions to find all the interger so-
lutions to a linear Diophantine equation (See [7] for more). It should be
noted that the program that I have written, which will be described later,
contains functions that enable one to solve both Pell’s equations and linear
Diophantine equations. The user must input the non-square value for P, or
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the integer values of a,b, and c. The program will then compute all inte-
ger solutions using an algorithm that uses continued fractions. In order to
solve Pell’s equations using continued fractions, it is first necessary to define
a recursive definition for computing the continued fraction of a quadratic
irrational. For this reason, we skip over this topic and discuss only linear
Diophantine equations. See [9] and [6] for more on the relationship between
continued fractions and Pell’s equations.

Solving linear Diophantine equations can be broken down into the sim-
pler problem of solving for the equation ax + by = 1. Once we have found
one pair of integer soulutions x0, y0), we can solve the specific problem of
ax+ by = c by multiplying each solution by c since

a(cx0) + b(cy0) = c(ax0 + by0)

= c(1)

= c

It should also be pointed out that once we have found one solution to the
equation, we can use it to find all other integer solutions. Suppose (x0, y0)
is a solution to equation (1). Then ((x0 − bn), (y0 + an)), where n is any
integer, is also a solution. This can be seen quite easily as demonstrated
below.

a(x0 − bn) + b(y0 + an) = ax0 − abn+ by0 + abn

= ax0 + by0

= c

Before I demonstrate how to use continued fractions to solve linear Diophan-
tine equations, I must mention one restriction that should be placed on a

and b. The values of a and b should be relatively prime. If they are not,
then a and b might have a common factor that c does not. If this is the
case, there are no solutions since one side of the equation is divisible by this
factor, while the other is not. For example, there are no integer solutions to
the equation 4x + 2y = 7 since the left side is divisible by 2, but the right
side is not.

By imposing this condition on a and b, that is, gcd(a,b) = 1, we know
we can find all solutions to the Diaphantine equation. Suppose that (x0, y0)
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and (x1, y1) are solutions to the same Diaphantine equation. We want to
show that

(x1, y1) = (x0, y0) + n(−b, a)

for some n. Since

ax0 + by0 = c = ax1 + by1

ax0 − ax1 = by1 − by0

a(x0 − x1) = b(y1 − y0)

Since gcd(a,b) = 1, b must divide (x0 −x1) and a must divide (y1 − y0). So,

(x0 − x1) = bn

(y1 − y0) = am

for some integers n and m. But n = m, and this gives us our desired n. So,
all solutions to the Diaphantine equation can be found by this method.

We are now in a position to explain how to use continued fractions to
solve equations of the form ax + by = 1. To solve such equations, we must
first form the continued fraction of a

b
. Let [a1; a2, . . . , an] be this continued

fraction. (Since a
b
is a rational, its simple continued fraction will have a finite

number number of terms by Theorem 1.) Recall the convergent relationship
that we proved earlier, that is,

pkqk−1 − pk−1qk = (−1)k.

We also know that the nth convergent, Cn = pn
qn
, of [a1; a2, . . . , an] must be

equal to a
b
, So,

aqn−1 + b(−pn−1) = (−1)n.

From this equation, we see that if the number of terms of the continued
fraction is even, then a solution to the equation ax + by = 1 is qn−1 and
(−pn−1), where

pn−1

qn−1
is the (n− 1)th convergent.

However, if the number of terms is odd, we have

aqn−1 + b(−pn−1) = −1

By multipling through by -1, we find that

a(−qn−1) + bpn−1 = 1

thus giving us a desired solution. With these solutions, we can find the
solution to the equation ax+ by = c as described above.
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I provide here a brief example. Suppose we wished to find all integer
solutions to the equation 7x + 19y = 23. Our first step is to find the
continued fraction of 7

19
. When we do, we find that

7

19
= 0 +

1

2 +
1

1 +
1

2 +
1

2

Next, we caclulate the convergents of the above fraction. We see that
C1 = 0

1
, C2 = 1

2
, C3 = 1

3
, C4 = 3

8
, and C5 = 7

19
. Since there are an

odd number of convergents, our solution to the problem 7x + 19y = 1 is
x = (−q4) = −8 and y = p4 = 3. We first check to see if this true:

7 · (−8) + 19 · (3) = −56 + 57

= 1

We can now find the solution to our specfic problem by multiplying each
solution by 23. We find that one solution to the equation is 7x+ 19y = 23
is (−184, 69). From this solution, we can find the set of all integer solutions.
The set of all solutions is {(−184− 19n), (69 + 7n)|n ∈ Z}.

An interesting off shoot of this work is that it also enables us to solve
equations of the form

ax ≡ b (mod m).

This congruence problem can be solved by using some of the methods we
have just discussed. To do this, we note that solving this equation is equiv-
alent to solving the equation

ax+my = b

which is a linear Diophantine equation. If (x0, y0) are solutions to this
equation, then

ax0 +my0 = b

But then x0 is a solution to the above congruence since

ax0 (mod m) ≡ ax0 +my0 (mod m)

≡ b (mod m)
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Hence, our method to solve linear Diophantine equations can be extended
to solve other problems, as in this case, were we use it to solve congruence
problems.

In general, linear Diophantine equations can be solved by taking advan-
tage of the relationship we found between consecutive convergents. By using
these results, we can find the entire set of solutions.

4.2 Continued Fractions and Gear Ratios

One of the first applied uses of continued fractions was to determine which
gears to use in creating a desired gear ratio. This application, which was first
pioneered by the Dutch mathematican and astronomer Christiaan Huygens,
is the focus of this section. We shall see how to utilize continued fractions
for this purpose. In addition to this, we will prove a theorem that justifies
this choice. The major source for this discussion is [6].

The term gear ratio is used to refer to the number of rotations a gear
must make to cause its companion gear to revolve a different number of
rotations. For example, if two gears, say A and B, are joined together and
have a gear ratio of 3:2, this means that gear A must revolve three times
to cause two rotations of gear B. (This is equivalent to saying that gear B
must rotate twice to cause three revolutions of gear A.) To create a gear
ratio, say X:Y , one merely has to use a gear with X number of teeth and a
gear with Y teeth. For example, to create a gear ratio of 37:51, one has to
use a gear with 37 teeth combined with a gear of 51 teeth.

However, determining which gears to use is not always this easy. Two dif-
ficulties immediately arise. The first problem is a result of the impractibility
of producing gears with any given number of teeth. Generally, the number
of teeth on gear vary between twenty and a hundred. Any less causes the
gears to mesh incorrectly; any more is difficult to make. Thus, a gear ratio
of 101:201 cannot be made by using gears with teeth that have 101 and 201
teeth respectively.

The second difficulty arises when one wishes to institute a gear ratio that
is irrational. For example, suppose one needs a ratio of

√
101 : 45. In this

case, it is meaningless to pick a gear with
√
101 teeth. To get around this

problem and the previous one, we need to find rational approximants that
have both their numerator and denominator between twenty and a hundred.

To get around both of these problems, we can make use of continued
fractions, or more specifically, the convergents of a continued fraction to
find rational approximants. The first step in finding these approximants is
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to compute the continued fraction of the ratio. In the case of an irrational
number, computing the first dozen or so terms should be sufficient. If not,
we can always compute more. The next step involves calculating the conver-
gents of the continued fraction. Once we have done this, we search our set
of convergents for those with both numerator and denominator in our our
desired range, that is, between twenty and a hundred. If there are more than
one, we pick the convergent with the greatest subscript. This convergent is
the one we will use to approximant the desired ratio.

Before I justify some of the steps in this algorithm, I will demonstrate
how it is used. Suppose the desired ratio we need is 7111:10000. Obviously
we cannot use gears of 7111 and 10000 teeth, so we need to find a rational
approximant that has both its numerator and denominator between twenty
and hundred. We calculuate the contined fraction and find that

7111

10000
= [0; 1, 2, 2, 5, 1, 43, 1, 1, 2].

Next, we calculate the convergents of the continued fraction. The values are
listed below.

C1 =
0

1
, C6 =

32

45
,

C2 =
1

1
, C7 =

1403

1973
,

C3 =
2

3
, C8 =

1435

2018
,

C4 =
5

7
, C9 =

2838

3991
,

C5 =
27

38
, C10 =

7111

10000
.

Only C5 and C6 have both their numerator and denominator between
twenty and a hundred. Since C6 has the greater subscript, we pick 32

45
as our

rational approximant for 7111
10000

. We can now create our gear ratio by using
gears with teeth of 32 and 45 respectively. Notice that 32

45
overestimates

7111
10000

by only a small value. In fact,
∣

∣

∣

∣

7111

10000
− 32

45

∣

∣

∣

∣

= 0.00001
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The approximation is quite close to the desired ratio.
Note that I have not explained why this works, and why we pick the

convergent with the greatest subscript. In the following, I try to fill in these
gaps.

Part of the reason this method works is based on the fact that the con-
vergents converge to the value of the continued fraction. Suppose α is this
value. Then it can be shown that the odd convergents is an increasing
sequence that converges to α, that is

C1 < C3 < C5 < . . . ≤ α.

The value of α may equal one of the convergents if α is a rational whose
continued fraction has an odd number of terms. The even convergents form
a decreasing sequence that converges to α;

C2 > C4 > C6 > . . . ≥ α.

Again, α is in the sequence only if α is a rational whose continued fraction
has an even number of terms. If α is irrational, the sequence approaches the
value of α.

Rather than providing a proof for these claims, I will direct your atten-
tion to [7] and [9]. I will instead demonstrate why we chose the convergent
with the greatest subscript. It is not readily apparent why we do this. We
will see that each convergent is a better approximant to the continued frac-
tion than the previous. This proof has been modeled upon the one found in
[9].

Theorem 8 Each convergent is nearer to the value of a simple continued
fraction than is the preceding convergent.

PROOF: We must consider two cases, when the simple continued fraction
is finite, and when it is infinite. We will first show that the statement is true
if the simple continued fraction is finite.

Let x be a rational number whose continued fraction is given by

[a1; a2, a3, . . . , an].

We now rewrite x as

x = [a1; a2, a3, . . . , ak, xk+1]
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where
xk+1 = [ak+1, . . . , an].

Since x is rational, its continued fraction has n terms for some integer n We
impose the condition on k such that k ≤ n − 1. If k were larger, then our
definiton of xk+1 would be meaningless.

Using our definiton of convergents,

x =
xk+1pk + pk−1

xk+1qk + qk−1

.

Rearranging, we find that

x(xk+1qk + qk−1) = xk+1pk + pk−1.

For k ≥ 2, we have

xk+1(xqk − pk) = −(xqk−1 − pk−1)

= −qk−1 ·
(

x− pk−1

qk−1

)

Next, we divide through by xk+1qk to get

(

x− pk

qk

)

=

(

− qk−1

xk+1qk

)

·
(

x− pk−1

qk−1

)

.

We know that if a = b · c, then |a| = |b| · |c|. So,
∣

∣

∣

∣

x− pk

qk

∣

∣

∣

∣

=

∣

∣

∣

∣

qk−1

xk+1qk

∣

∣

∣

∣

·
∣

∣

∣

∣

x− pk−1

qk−1

∣

∣

∣

∣

. (3)

Since 2 ≤ k ≤ n + 1, we know that xk+1 > 1. If k < n + 1, the xk+1 =
[ak+1, . . . , an]. Since each term is positive, then xk+1 > ak+1 ≥ 1. If k =
n − 1, then xk+1 = [an]. We can assume that an > 1 because if it is equal
to one, we can rewrite the continued fraction for x as

[a1; a2, a3, . . . , (an−1 + 1)].

Similarly, we can show that for k ≥ 2, qk > qk−1 > 0. Recall that qi =
aiqi−1+qi−2, where q0 = 0, and q−1 = 1. When we calculate the first couple
terms, we see that q1 = 1, q2 = a2, q3 = a3a2 + 1, . . . Since ai ≥ 1 for all
i ≥ 2, then the sequence q1, q2, q3, . . . must be strictly increasing.
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Hence,

0 <
qn−1

xn+1qn
< 1,

or

0 <

∣

∣

∣

∣

qn−1

xn+1qn

∣

∣

∣

∣

< 1.

By applying the above to (3), we see that
∣

∣

∣

∣

x− pk

qk

∣

∣

∣

∣

<

∣

∣

∣

∣

x− pk−1

qk−1

∣

∣

∣

∣

for n ≥ 2, or by rewritten in terms of convergents, we arrive at

|x− Ck| < |x− Ck−1|

for n ≥ 2. This demonstrates that Ck is closer to x then Ck−1.
The proof is similar to show that the theorem is true for infinite simple

continued fractions. The difference is that we assume that

x = [a1; a2, a3, . . . , xk+1]

where
xk+1 = [ak+1, ak+2, . . .].

The proof follows just as before except this time we do not impose a restric-
tion on the size of k. ✷

Before I conclude on this topic, there are some difficulties I should men-
tion with this algorithm. This algorithm, or process, does not always work.
There may be cases where none of the convergents have both their numer-
ator and denominator between twenty and a hundred. For example, the
first few convergents for π are C1 = 3

1
, C2 = 22

7
, C3 = 333

106
, and C4 = 355

113
.

Note that none of the convergents have the property for which we are look-
ing. One way around this problem is to find a fraction that is equivalent
to one of these convergents that is within the desired range. For example,
we can multiply both the numerator and denominator of C2 by four to give
us a rational approximation of 88

28
. This is a rational we can use. But even

then, not all solutions can be found. There exist some gear ratios that can-
not be made by joining two gears together. Methods other than continued
fractions, which will not be discussed here, must be employeed.

Continued fractions, though they do not provide all solutions, enable us
to find which gears to use to create a desired gear ratio. The algorithm
takes advantage of the convergents of the continued fraction to find rational
approximants for the needed gear ratio.
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5 Putting Continued Fractions On-line

Up to this point, my focus has been on the historical past of continued
fractions. I first delved into the history of continued fractions. I followed
this by explaining and proving some classical theorems about continued
fractions. I also discussed past applications of this discipline. At this point,
however, I would like to shift the focus away from past developments and
discuss the other part of my independent study, that is, my attempt at
combining continued fractions and the World Wide Web.

The World Wide Web (WWW) is a facet of the Internet that has experi-
enced an explosion of growth and use. In a few short years, this medium has
become the premiere way to navigate the internet. My first introduction to
the WWW, or web as it is commonly called, came from one of the mathe-
matics department’s colloquia. I was further immersed into the web when I
received an undergraduate scholarship to work at the Centre for Experimen-
tal and Constructive Mathematics in Vancouver, BC, during the summer of
1995. It was here that I learned to create web pages and programs that
web users could interact with. This job would later prove to be invaluable
experience for this project.

On the web, one can find information on almost every topic. When I
began this project, I searched the web for information on continued fractions.
However, most of my searches resulted in finding only mathematical papers
that mentioned or used continued fractions. I could not find a site that could
provide an elementary introduction to the topic. Finding this void provided
some of the initial inspiration for creating a web site devoted to continued
fractions. This project would also enable me to indulge in one of my other
interests, that is, computers and programming. I envisioned this web site as
a thorough introduction to continued fractions. Not only would it include
some historical background and some basic theorems, I also wanted to make
interactive programs to give the general user a flavor of this field and its
possiblities.

Rather than jumping into the development of the web site, I decided to
first create a library of functions that used and calculated continued frac-
tions. Once I had created this library, I could then use it for the interactive
feature for my web site. An advantage of creating the library first was the
fact that it would in some sense force me to truly understand continued
fractions. Only after understanding continued fractions would I be able to
code the algorithms that utilized them.

For a programming language, I decided to write in C++ since I already
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had some working knowledge of this language. Most of the work was done on
the school’s Sparc workstations that use the Sun operating system. Over the
course of a semester, I programmed various functions that eventually ended
up in the library. For example, I designed a function that would receive as
input a rational value and output the simple continued fraction expression
for that rational. I did the same for quadratic irrationals. I also developed
a method to evalulate continued fractions. A function that computed the
convergents of a continued fraction was included as well. As noted before,
the library contains functions that enable one to compute the solutions of
linear Diophantine and Pell’s equations.

I should note that there exist other libraries that deal with continued
fractions. For example, the symbolic mathematics programs, Maple V and
Mathematica, include functions that do much the same thing as my library.
(Actually, from what I could find, Mathematica cannot evaluate a non-
terminating, periodic fraction as mine can.) I mention this to point out
that my work is not unique and that it can be obtained via other sources.
However, part of the challenge of this work was to see if I could do it myself.

In programming the library, I encountered some difficulty in implement-
ing algorithms that used continued fractions. Presently, I have run into two
major problems that, if time permits, I will try to correct. The first bug
derives not from my algorithm, but rather, from the way integer values are
stored on the computer. Any integer value larger than 231 − 1 cannot be
accurately stored since not enough memory has been allocated for it. When
such a value is entered, it is stored as an incorrect value. This prevents the
program from running correctly since it does not have the correct value to
use. Though this is not a serious problem, it can sometimes be annoying
and prevents the program from being as stable as I wanted it to be. One
possible solution for this problem is to declare all the integer values with
the C++ long int data type. This should greatly increase the size of the
integer that can be stored.

Another snag that I have discovered in my project is that I cannot al-
ways rely on my use of static arrays, that is, arrays that do not have the
ability to change their storage capacity. Though I have set most of these
arrays to a large size, some specific examples have resulted in the dreaded
segmentation fault error. To correct this, I will need to rewrite a portion
of the program and use dynamic arrays. These arrays, though more tricky
to implement, should correct the problem.

Overall, the functions in the library seem to work as desired. In most
simple cases it gives the correct response. The errors only show up in a small
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percentage of the inputs. If time permits, I plan to fix these errors in order
to make the functions as robust as possible. For those of you interested, I
have included the code for my library as an appendix to this paper.

Once I had completed the library of functions, I was ready to begin
work on the actual web site. One of the first things that I needed to do was
to determine the intended audience of this web site. This decision would
greatly effect the content of the web site. For example, if I wanted to explain
continued fractions to the average person, I would have to greatly limit the
mathematical content. In the end, I decided to make this web site under-
standable to those at my own level, that is, undergraduates with an interest
or aptittude for mathematics. I opted for this route because I figured it was
this subset of web users that would probably want or need an introduction
to continued fractions. This group would be the ones that would be able to
understand and use my site. As a result, much of the material and content
of the web site assumes at least some college mathematics.

The other thing that I needed to decide was how to lay out the web
pages. I ended up splitting the web site into five main sections: Introduction,
History, Theory, Applications, and Bibliography and Sources. The first
section, Introduction, is what one would expect. It provides a brief overview
of the site, as well as a motivation for its existence.

The next two divisions of the web site contain some of the material
already presented in this paper. The History division provides a sketch of
past developments of continued fractions. The Theory section provides a
number of definitions, as well as a few proofs on continued fractions that
are found in this paper. One major difference between this paper and the
on-line web site was my ability to use hypertext. I used hypertext around
difficult words, names, or bibliographical sources to allow the user to “jump”
to related information at the click of a button. This ability is one of the
advantages of writing documents using a hypertext language such as HTML
(HyperText Markup Language).

The next section, Applications, is one that greatly differs from the section
on applications in this paper. While in this paper I merely described how to
use continued fractions, on the web site I provide the user with the ability
to actually perform some of these applications. Those accessing this site
can change a rational of their choice into a continued fraction, or choose to
find the value of a continued fraction after providing its terms. It can also
calculate every convergent of a given continued fraction. Users can also use
this web site to find solutions to Pell’s equations and Diophantine equations.

In order to provide this interaction, I needed to do a number of things.
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First, I had to write the programs that used the library. These programs
had to be written in C++ in order to take advantage of the library. Sec-
ondly , I had to create small programs, or scripts, written in Perl (Practical
Extraction and Report Language), that would receive the input from the
user. The Perl script had to verify that the users input was correct (that
it wasn’t a real value or a character) before passing the input along to the
correct program. In a sense, the Perl scripts coordinate the action between
the user and the actual program that executes the function. And thirdly,
it was also necessary to create the web pages correctly to receive the input
in the first place. The coordination between these three pieces, the web
page, the Perl scripts, and the C++ programs provided some of the greater
difficulty in this project.

The final division of the web site is a section devoted to a list of resources
and a bibliography. It also contains a list of sites on the World Wide Web
that deal with continued fraction. In order to find these sites, I used the
presently available web searchers, such as Yahoo, Lycos, and Webcrawler. I
then found it necessary to check each result to determine if the site contained
some substance on the topic of continued fractions as opposed to a trivial
reference.

One facet of this project that I should also mention is the effort to make
the web site aesthetically pleasing. From my past experience “surfing” the
net, I have come across a number of sites whose appearance have made it
difficult to use. I spent some time making sure that the site was well laid
out, as well as easy to use and read. Though this facet may have no direct
connection to continued fractions, I thought it would be prudent to dedicate
some time to this area. I did not want prospective users to be turned off
from using this site just because of a poor choice of a background.

Presently, I have not publicly announced the completion of my web site
on continued fractions. I thought it would be appropriate to first receive
some local feedback before I make this step. When I have received some
initial criticism and instituted any changes warranted by any suggestions, I
will publicize my site.

With the lack of any feedback, it is hard to judge whether I have ful-
filled my goal. What I think may be well laid out and explained could
be disorder and incoherent to someone using my site. Hopefully, however,
this site will received and used as I envisioned it, that is, as an introduc-
tion to the world of continued fractions. For those of you who wish to
check out this web site, the URL (Uniform Resource Locator) of the site is:
http://www.calvin.edu/∼avtuyl52/confrac/
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6 Conclusion

If I were asked to describe my independent study in a single word, the word
I would probably settle upon would be experiment. I would pick this word
because this is what this project has been for me. This independent study
has been an experiment in doing mathematics on my own. Almost every
aspect of this project involved trying something new, experimenting with
its possiblities. For example, this project is the first time that I have had
to do mathematics on my own. This included working out proofs by myself,
(albeit, with some help from advisor), as well as learning to do indepen-
dent research. One of my weekly assignments was to present my work to
my advisor via a blackboard in his office. This gave me the opportunity
to experiment with this medium. This project has also been my first ex-
periment in writing a mathematics paper. Integrating continued fractions
and the World Wide Web was another experiment that I tackled. I even
experimented with using LATEXto create this paper. Before this project is
finished, I will also have tried my hand at teaching what I have learned
at Calvin’s weekly mathematics colloquim. And of course, I learned more
about continued fractions, a field of mathematics that seems to have been
relatively ignored over the last couple of years. It is my hope, that through
this paper, and especially through the web site, that others will inspired to
experiment with the field of continued fractions as well.

33



References

[1] N.M. Beskin, Fascinating Fractions. Mir Publishers, Moscow, 1980.
(Translated by V.I. Kisln, 1986).

[2] Claude Brezinski, History of Continued Fractions and Padé Approxi-
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Appendix

In the pages that follow, one will find the C++ code for the library of
functions that I wrote as part of this project. There are two parts. The first
part is the header file for the library which contains the description of the
various functions. The second part is the code that actually carries out and
performs these functions.
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Appendix A - The Header File
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Appendix B - Source Code of the Library
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